~.summary File
This section describes the summary file (~.summary), one of the most important output files, which is produced by every run of mloc. It has several sections:
- Header section
- Hypocentroid section
- Hypocentroid shift section
- Cluster statistics section
- Cluster vector changes section
- Data importance distribution section
- Event section
Header Section
The header section lists basic information and many of the parameters that were set for the run. Its use is mainly forensic: if you are inspecting a relocation by someone else or if you go back after some time to review one of your own runs, the information in the header section will provide answers to most of the basic questions about how it was done. Here is an example, from the Ridgecrest, California cluster (ridgecrest3.1):
Program: mloc v10.4.7, release date 7/14/2019 Run: ridgecrest3.1 Author: EBergman Date: 20190824 132053.523 Travel times: ak135 (ridgecrest3/ridgecrest.cr) Lg travel times: 0.03 + 31.68 * delta T-phase travel times: 15.00 + 75.00 * delta Station elevation correction: on (focal depth referenced to geoid in direct calibration) Supplemental station file: ridgecrest3/ridgecrest_stn.dat Data flags used: on Residuals weighted by reading errors: on Assume perfect theoretical TTs for hypocentroid (ttsprd = 0): off Reading errors: ridgecrest3/ridgecrest2.42.rderr Minimum allowed reading errors: 0.10 (local) / 0.15 (general) / 1.00 (depth phases) Reading errors for local phases: Not set Cluster vector fudge factor (non-gaussian): 0.00 Travel time spread: ridgecrest3/ridgecrest2.42.ttsprd Windowing: 3.0 4.0 Hypocentroid bias correction: on Data flags: used Starting locations: ridgecrest3/ridgecrest2.42.hdf_dcal Direct calibration: on Distance ranges: Hypocentroid : 0.0 0.8 Cluster vectors: 0.0 180.0 Hypocentroid location parameters: (lat, lon, , origin time)
Hypocentroid Section
This section tracks changes in the hypocentroid of the cluster through the relocation.
TIME LATITUDE LONGITUDE DEPTH E**2/NSTA SHAT PRMAX DELT PRES FLAG START 14:18:47.53 35.787 -117.570 15.0 ITER 0 0.00 S -0.02 KM 0.01 KM 0.00 KM 104.0/ 1197 0.89 4.0 9235 656 1915 ITER 1 0.00 S 0.02 KM 0.00 KM 0.00 KM 104.8/ 1197 0.89 4.0 9235 609 1915 ITER 2 0.00 S 0.01 KM 0.00 KM 0.00 KM 104.2/ 1197 0.89 4.0 9235 608 1915 CUMULATIVE 0.00 S 0.01 KM 0.01 KM 0.00 KM AZIM = 0 DEG DIST = 0.0 KM SOLUTION 14:18:47.53 35.787 -117.570 15.0 STANDARD ERRORS 0.02 S 0.001 DEG 0.002 DEG 0.00 KM ELLIPSE: -33.9 DEG 0.3 AND 0.3 KM
Hypocentroid Shift Section
This section of a ~.summary file only exists in the case of indirect calibration. In that case, after the relocation is converged, using either an uncalibrated or direct calibration methodology, the locations of events that have been declared as calibration events in the command file are compared with the calibration locations and an optimal shift of the entire cluster in space and time is calculated to bring the cluster into best agreement with the calibration data. In this section the shift required for each calibration event is listed and the final optimal shift. Much more detail about this process is provided in the Cal file (~.cal) file that is produced when indirect calibration is invoked.
The following example is taken from a cluster consisting nuclear tests conducted by the United States at Bikini Atoll:
SHIFT -0.25 S -0.032 DEG 0.072 DEG 0.00 KM AZIM = 114 DEG DIST = 8.6 KM CALIBRATED 16:30:20.01 11.670 165.324 0.0 Calibration event correction vectors (weights): EVENT 1 19540228.1845.00 -0.08(1.39) -0.021(1.51) 0.058(1.51) 0.00(1.00) AZIM = 110 DEG DIST = 6.7 KM EVENT 2 19540326.1830.00 -0.28(1.47) -0.027(1.75) 0.088(1.75) 0.00(1.00) AZIM = 107 DEG DIST = 10.0 KM EVENT 3 19540425.1810.00 -0.66(0.94) -0.027(0.90) 0.069(0.90) 0.00(1.00) AZIM = 112 DEG DIST = 8.1 KM EVENT 4 19540504.1810.00 -0.23(1.35) -0.033(1.49) 0.050(1.49) 0.00(1.00) AZIM = 124 DEG DIST = 6.6 KM EVENT 5 19560527.1756.00 -0.48(0.71) -0.041(0.91) 0.060(0.91) 0.00(1.00) AZIM = 125 DEG DIST = 8.0 KM EVENT 6 19560710.1756.00 -0.47(0.86) -0.058(0.89) 0.077(0.89) 0.00(1.00) AZIM = 128 DEG DIST = 10.5 KM EVENT 7 19560720.1746.00 -0.02(0.59) -0.021(0.31) 0.114(0.31) 0.00(1.00) AZIM = 100 DEG DIST = 12.6 KM EVENT 8 19580511.1750.00 -0.14(0.65) -0.061(0.35) 0.114(0.35) 0.00(1.00) AZIM = 119 DEG DIST = 14.1 KM EVENT 9 19580712.0330.00 0.04(1.05) -0.023(0.90) 0.084(0.90) 0.00(1.00) AZIM = 106 DEG DIST = 9.5 KM
The first line provides the calibration shift applied to the cluster, followed by the calibrated hypocentroid parameters. The following lines list the calibration shift required in each parameter (in the order: OT, lat, lon, depth), based on each calibration event, and each parameter is followed in parentheses by the weight given that datum in calculating the optimal shift. The weights are based on the uncertainty of that parameter in the calibration data and in the corresponding event cluster vector.
Cluster Statistics Section
This section tracks the cumulative squared error and number of data used for the cluster vectors through each iteration, and calculates the normalized sample variance shatc over all cluster vectors. In the early stages of a relocation shatc will usually be greater than 1 but as outlier readings are flagged and empirical reading errors are developed, it should finally be very close to 1.0. From ridgecrest3.1:
cluster vector statistics ITER E**2/NSTA SHATC 0 5928.2/ 7510 0.99 1 5649.7/ 7556 0.96 2 5650.0/ 7556 0.96 Spread of event normalized sample variances: 0.161
The last line of this section is based on an analysis of the normalized sample variances for each event in the cluster, which are listed in the event section. These values are expected to be normally distributed around 1.0 with a spread determined by Bayesian considerations, as discussed in Jordan and Sverdrup (1981). The relevant code is in the module mlocinv.f90, in the section “Confidence ellipses for lat-long” beginning on line 402, which contains a lengthy comment on the approach used. As noted therein a conservative choice of k=3 is made for the Bayesian parameter, which leads to an expected spread of 0.4 for the normalized cluster sample variances. One could review the observed spreads of many clusters and perhaps decide to change the value of the Bayesian parameter (probably raise it), but this has not yet been done.
If the spread of event normalized sample variances were noticed to be significantly larger than expected, it means one (or probably more) of the individual cluster vectors have major problems, and investigation is certainly warranted.
Cluster Vector Changes Section
This section lists three columns for the cluster vector of each event, the initial vector, the final vector and (in the middle) the change vector. In the early stages of a relocation, the change vectors are often large but by the end they should be very close to zero, as the relocation is started from the previous location and converges immediately without any events moving around. During relocation if one or a few events are unstable they can be spotted quickly in the “CHANGE” column. If a preliminary or exploratory cluster contains some events that end up being rather far away from the area of interest, the “FINAL” column of the output is a convenient way to pick them out. Here is the section from the ridgecrest3.1 run:
INITIAL CHANGE FINAL EVENT 1 19930520.2014.14 36.2 KM AT 340 DEG 0.0 KM AT 0 DEG 36.2 KM AT 340 DEG EVENT 2 19950817.2239.57 12.4 KM AT 269 DEG 0.0 KM AT 0 DEG 12.4 KM AT 270 DEG EVENT 3 19950830.1529.53 8.2 KM AT 267 DEG 0.0 KM AT 0 DEG 8.2 KM AT 267 DEG EVENT 4 19950920.2327.35 10.0 KM AT 249 DEG 0.0 KM AT 0 DEG 10.0 KM AT 249 DEG EVENT 5 19950925.0447.28 5.7 KM AT 306 DEG 0.0 KM AT 0 DEG 5.8 KM AT 307 DEG EVENT 6 19951018.1242.04 8.5 KM AT 225 DEG 0.0 KM AT 0 DEG 8.5 KM AT 225 DEG EVENT 7 19960107.1432.52 12.0 KM AT 250 DEG 0.0 KM AT 0 DEG 12.0 KM AT 250 DEG EVENT 8 19960108.0857.10 8.1 KM AT 258 DEG 0.0 KM AT 0 DEG 8.1 KM AT 258 DEG EVENT 9 19960108.1052.29 4.4 KM AT 253 DEG 0.0 KM AT 0 DEG 4.4 KM AT 253 DEG EVENT 10 19960126.1306.02 7.9 KM AT 263 DEG 0.0 KM AT 0 DEG 7.9 KM AT 263 DEG EVENT 11 19961127.2017.24 33.4 KM AT 347 DEG 0.0 KM AT 0 DEG 33.5 KM AT 347 DEG EVENT 12 19961217.0403.22 35.5 KM AT 348 DEG 0.0 KM AT 0 DEG 35.6 KM AT 348 DEG EVENT 13 20081125.0411.36 29.8 KM AT 46 DEG 0.0 KM AT 0 DEG 29.8 KM AT 46 DEG EVENT 14 20081202.1123.43 32.2 KM AT 47 DEG 0.0 KM AT 0 DEG 32.2 KM AT 47 DEG EVENT 15 20081202.1641.19 30.1 KM AT 48 DEG 0.0 KM AT 0 DEG 30.1 KM AT 48 DEG EVENT 16 20081202.1653.09 30.4 KM AT 48 DEG 0.0 KM AT 0 DEG 30.4 KM AT 48 DEG EVENT 17 20090131.2109.21 45.3 KM AT 204 DEG 0.0 KM AT 0 DEG 45.4 KM AT 204 DEG EVENT 18 20090220.1219.13 33.0 KM AT 47 DEG 0.0 KM AT 0 DEG 32.9 KM AT 47 DEG EVENT 19 20121202.1020.34 42.6 KM AT 323 DEG 0.0 KM AT 0 DEG 42.6 KM AT 323 DEG EVENT 20 20131223.1339.26 60.0 KM AT 311 DEG 0.0 KM AT 0 DEG 60.0 KM AT 311 DEG EVENT 21 20140304.2249.31 31.3 KM AT 50 DEG 0.0 KM AT 0 DEG 31.3 KM AT 50 DEG EVENT 22 20140313.0211.04 57.9 KM AT 310 DEG 0.0 KM AT 0 DEG 57.9 KM AT 310 DEG EVENT 23 20160809.0424.56 33.6 KM AT 326 DEG 0.0 KM AT 0 DEG 33.6 KM AT 326 DEG EVENT 24 20170822.1951.58 59.5 KM AT 76 DEG 0.0 KM AT 0 DEG 59.5 KM AT 76 DEG EVENT 25 20170919.1845.44 32.3 KM AT 325 DEG 0.0 KM AT 0 DEG 32.3 KM AT 325 DEG EVENT 26 20190704.1702.55 11.1 KM AT 145 DEG 0.0 KM AT 0 DEG 11.1 KM AT 145 DEG EVENT 27 20190704.1733.49 11.3 KM AT 145 DEG 0.0 KM AT 0 DEG 11.3 KM AT 145 DEG EVENT 28 20190704.1735.01 15.9 KM AT 177 DEG 0.0 KM AT 0 DEG 15.9 KM AT 178 DEG EVENT 29 20190704.1737.55 4.8 KM AT 160 DEG 0.0 KM AT 0 DEG 4.8 KM AT 160 DEG EVENT 30 20190704.1740.18 10.6 KM AT 151 DEG 0.0 KM AT 0 DEG 10.6 KM AT 151 DEG EVENT 31 20190704.1744.32 12.8 KM AT 151 DEG 0.0 KM AT 0 DEG 12.8 KM AT 151 DEG EVENT 32 20190704.1806.16 15.1 KM AT 162 DEG 0.0 KM AT 0 DEG 15.1 KM AT 162 DEG EVENT 33 20190704.1827.59 5.2 KM AT 160 DEG 0.0 KM AT 0 DEG 5.2 KM AT 160 DEG EVENT 34 20190704.1828.43 13.7 KM AT 180 DEG 0.0 KM AT 0 DEG 13.7 KM AT 180 DEG EVENT 35 20190704.1839.44 20.4 KM AT 184 DEG 0.0 KM AT 0 DEG 20.4 KM AT 184 DEG EVENT 36 20190704.1847.06 15.0 KM AT 146 DEG 0.0 KM AT 0 DEG 15.0 KM AT 146 DEG EVENT 37 20190704.1854.13 21.3 KM AT 186 DEG 0.0 KM AT 0 DEG 21.3 KM AT 186 DEG EVENT 38 20190704.1856.06 7.9 KM AT 172 DEG 0.0 KM AT 0 DEG 7.9 KM AT 172 DEG EVENT 39 20190704.1921.32 15.6 KM AT 147 DEG 0.0 KM AT 0 DEG 15.6 KM AT 147 DEG EVENT 40 20190704.1956.00 14.8 KM AT 162 DEG 0.0 KM AT 0 DEG 14.8 KM AT 162 DEG EVENT 41 20190704.2212.08 5.0 KM AT 177 DEG 0.0 KM AT 0 DEG 5.0 KM AT 177 DEG EVENT 42 20190704.2334.00 15.0 KM AT 164 DEG 0.0 KM AT 0 DEG 15.0 KM AT 164 DEG EVENT 43 20190705.0018.01 4.8 KM AT 248 DEG 0.0 KM AT 0 DEG 4.8 KM AT 248 DEG EVENT 44 20190705.1107.53 3.2 KM AT 193 DEG 0.0 KM AT 0 DEG 3.2 KM AT 193 DEG EVENT 45 20190706.0319.52 3.3 KM AT 230 DEG 0.0 KM AT 0 DEG 3.3 KM AT 230 DEG EVENT 46 20190706.0346.26 14.7 KM AT 143 DEG 0.0 KM AT 0 DEG 14.7 KM AT 143 DEG EVENT 47 20190706.0407.04 25.8 KM AT 168 DEG 0.0 KM AT 0 DEG 25.8 KM AT 168 DEG EVENT 48 20190706.0413.07 20.9 KM AT 199 DEG 0.0 KM AT 0 DEG 20.9 KM AT 199 DEG EVENT 49 20190706.0440.16 19.4 KM AT 148 DEG 0.0 KM AT 0 DEG 19.4 KM AT 148 DEG EVENT 50 20190706.0832.57 18.8 KM AT 156 DEG 0.0 KM AT 0 DEG 18.8 KM AT 156 DEG EVENT 51 20190706.0859.55 23.0 KM AT 145 DEG 0.0 KM AT 0 DEG 23.0 KM AT 145 DEG EVENT 52 20190706.1636.04 24.8 KM AT 166 DEG 0.0 KM AT 0 DEG 24.8 KM AT 166 DEG EVENT 53 20190706.2350.41 9.4 KM AT 293 DEG 0.0 KM AT 0 DEG 9.4 KM AT 293 DEG EVENT 54 20190707.0538.15 2.7 KM AT 185 DEG 0.0 KM AT 0 DEG 2.7 KM AT 185 DEG EVENT 55 20190707.1122.16 2.6 KM AT 323 DEG 0.0 KM AT 0 DEG 2.6 KM AT 322 DEG EVENT 56 20190710.2009.51 14.4 KM AT 162 DEG 0.0 KM AT 0 DEG 14.4 KM AT 162 DEG EVENT 57 20190711.2345.18 21.9 KM AT 326 DEG 0.0 KM AT 0 DEG 21.9 KM AT 326 DEG EVENT 58 20190712.1311.37 16.7 KM AT 184 DEG 0.0 KM AT 0 DEG 16.7 KM AT 184 DEG
Data Importance Distribution Section
The concept of data importance is discussed in Jordan and Sverdrup (1981). This section displays the cumulative data importance of all the readings in 30° azimuthal wedges, for the hypocentroid, for the cluster vectors of individual events and the cluster vectors in total. This is a useful way to investigate the azimuthal distribution of the data, which is a critical aspect of a reliable relocation. It is difficult to quickly comprehend the numbers in the main table, so a graphical summary is shown at the end of each event line. If the cumulative data importance in a wedge is less than 0.010 the symbol “0” is plotted. Otherwise a “-” is plotted. A more precise measure of open azimuth for each event is found in the HDF file.
In practice, events with an open azimuth up to about 220° are usually stable in mloc. In this graphical display 6 or fewer “zeros” in a row (including wrap-around) are usually not worrisome.
DATA IMPORTANCE: NNE NE ENE ESE SE SSE SSW SW WSW WNW NW NNW HYPOCENTROID: 0.070 0.016 0.096 0.093 0.077 0.059 0.037 0.110 0.060 0.090 0.118 0.175 EVENT 1 19930520.2014.14 0.054 0.167 0.019 0.001 0.083 0.139 0.000 0.210 0.126 0.113 0.056 0.032 ---0--0----- EVENT 2 19950817.2239.57 0.124 0.069 0.085 0.006 0.065 0.170 0.004 0.146 0.035 0.165 0.053 0.078 ---0--0----- EVENT 3 19950830.1529.53 0.056 0.093 0.069 0.010 0.049 0.170 0.025 0.044 0.187 0.190 0.047 0.058 ------------ EVENT 4 19950920.2327.35 0.057 0.073 0.092 0.005 0.088 0.126 0.058 0.093 0.140 0.108 0.059 0.100 ---0-------- EVENT 5 19950925.0447.28 0.074 0.046 0.098 0.011 0.064 0.113 0.109 0.077 0.072 0.132 0.119 0.085 ------------ EVENT 6 19951018.1242.04 0.035 0.082 0.065 0.022 0.085 0.144 0.072 0.077 0.143 0.119 0.056 0.101 ------------ EVENT 7 19960107.1432.52 0.070 0.103 0.068 0.011 0.042 0.149 0.005 0.146 0.035 0.226 0.004 0.139 ------0---0- EVENT 8 19960108.0857.10 0.041 0.099 0.007 0.052 0.016 0.183 0.028 0.198 0.059 0.114 0.077 0.126 --0--------- EVENT 9 19960108.1052.29 0.022 0.074 0.042 0.002 0.089 0.149 0.046 0.105 0.090 0.193 0.033 0.155 ---0-------- EVENT 10 19960126.1306.02 0.043 0.042 0.059 0.031 0.065 0.136 0.022 0.091 0.165 0.184 0.032 0.129 ------------ EVENT 11 19961127.2017.24 0.057 0.076 0.091 0.009 0.075 0.123 0.059 0.103 0.177 0.012 0.144 0.074 ---0-------- EVENT 12 19961217.0403.22 0.103 0.069 0.034 0.002 0.086 0.064 0.127 0.222 0.055 0.057 0.142 0.040 ---0-------- EVENT 13 20081125.0411.36 0.022 0.096 0.006 0.111 0.143 0.080 0.119 0.080 0.084 0.006 0.207 0.046 --0------0-- EVENT 14 20081202.1123.43 0.031 0.103 0.029 0.106 0.146 0.075 0.075 0.107 0.042 0.109 0.131 0.046 ------------ EVENT 15 20081202.1641.19 0.023 0.088 0.005 0.119 0.162 0.080 0.121 0.092 0.042 0.000 0.232 0.036 --0------0-- EVENT 16 20081202.1653.09 0.030 0.094 0.006 0.121 0.129 0.080 0.140 0.061 0.041 0.006 0.251 0.041 --0------0-- EVENT 17 20090131.2109.21 0.060 0.079 0.063 0.147 0.091 0.065 0.081 0.019 0.084 0.143 0.009 0.160 ----------0- EVENT 18 20090220.1219.13 0.030 0.099 0.026 0.101 0.127 0.130 0.064 0.081 0.081 0.099 0.113 0.049 ------------ EVENT 19 20121202.1020.34 0.031 0.057 0.071 0.160 0.095 0.114 0.119 0.114 0.034 0.001 0.031 0.173 ---------0-- EVENT 20 20131223.1339.26 0.026 0.053 0.097 0.134 0.140 0.085 0.098 0.093 0.059 0.051 0.035 0.130 ------------ EVENT 21 20140304.2249.31 0.024 0.101 0.016 0.090 0.131 0.094 0.052 0.125 0.109 0.063 0.163 0.031 ------------ EVENT 22 20140313.0211.04 0.013 0.051 0.019 0.106 0.179 0.161 0.129 0.095 0.063 0.024 0.003 0.156 ----------0- EVENT 23 20160809.0424.56 0.045 0.049 0.106 0.116 0.117 0.093 0.035 0.169 0.039 0.019 0.160 0.050 ------------ EVENT 24 20170822.1951.58 0.151 0.075 0.012 0.114 0.044 0.143 0.044 0.093 0.071 0.149 0.009 0.097 ----------0- EVENT 25 20170919.1845.44 0.031 0.087 0.076 0.096 0.122 0.086 0.111 0.146 0.037 0.020 0.138 0.049 ------------ EVENT 26 20190704.1702.55 0.122 0.079 0.111 0.061 0.073 0.076 0.016 0.098 0.080 0.105 0.141 0.038 ------------ EVENT 27 20190704.1733.49 0.091 0.116 0.067 0.038 0.149 0.070 0.015 0.070 0.123 0.040 0.141 0.080 ------------ EVENT 28 20190704.1735.01 0.094 0.023 0.024 0.076 0.112 0.011 0.030 0.167 0.114 0.083 0.111 0.154 ------------ EVENT 29 20190704.1737.55 0.118 0.000 0.032 0.000 0.198 0.016 0.170 0.031 0.138 0.000 0.205 0.090 -0-0-----0-- EVENT 30 20190704.1740.18 0.022 0.085 0.019 0.023 0.155 0.040 0.003 0.164 0.110 0.072 0.166 0.142 ------0----- EVENT 31 20190704.1744.32 0.037 0.121 0.115 0.021 0.119 0.075 0.009 0.112 0.136 0.061 0.050 0.145 ------0----- EVENT 32 20190704.1806.16 0.035 0.155 0.028 0.029 0.140 0.067 0.005 0.188 0.053 0.061 0.084 0.154 ------0----- EVENT 33 20190704.1827.59 0.119 0.021 0.038 0.043 0.172 0.017 0.106 0.028 0.125 0.091 0.145 0.093 ------------ EVENT 34 20190704.1828.43 0.091 0.033 0.023 0.072 0.151 0.016 0.141 0.024 0.107 0.063 0.085 0.194 ------------ EVENT 35 20190704.1839.44 0.135 0.062 0.022 0.075 0.075 0.098 0.030 0.184 0.068 0.056 0.095 0.100 ------------ EVENT 36 20190704.1847.06 0.072 0.095 0.034 0.065 0.112 0.047 0.003 0.181 0.095 0.109 0.082 0.105 ------0----- EVENT 37 20190704.1854.13 0.097 0.140 0.018 0.122 0.052 0.048 0.003 0.170 0.091 0.078 0.078 0.104 ------0----- EVENT 38 20190704.1856.06 0.027 0.044 0.105 0.057 0.169 0.023 0.156 0.028 0.163 0.020 0.067 0.141 ------------ EVENT 39 20190704.1921.32 0.040 0.189 0.028 0.041 0.110 0.073 0.036 0.122 0.058 0.104 0.089 0.112 ------------ EVENT 40 20190704.1956.00 0.054 0.180 0.043 0.054 0.062 0.087 0.029 0.151 0.068 0.072 0.129 0.072 ------------ EVENT 41 20190704.2212.08 0.035 0.123 0.053 0.065 0.124 0.073 0.055 0.035 0.126 0.068 0.184 0.059 ------------ EVENT 42 20190704.2334.00 0.046 0.116 0.035 0.063 0.137 0.057 0.025 0.121 0.146 0.054 0.132 0.070 ------------ EVENT 43 20190705.0018.01 0.068 0.042 0.141 0.059 0.119 0.051 0.116 0.053 0.078 0.057 0.048 0.167 ------------ EVENT 44 20190705.1107.53 0.098 0.074 0.059 0.064 0.077 0.096 0.102 0.073 0.107 0.048 0.098 0.103 ------------ EVENT 45 20190706.0319.52 0.105 0.086 0.057 0.056 0.137 0.086 0.128 0.062 0.048 0.061 0.136 0.038 ------------ EVENT 46 20190706.0346.26 0.056 0.201 0.009 0.012 0.087 0.102 0.059 0.124 0.129 0.058 0.098 0.066 --0--------- EVENT 47 20190706.0407.04 0.084 0.127 0.002 0.140 0.066 0.021 0.027 0.165 0.093 0.121 0.075 0.079 --0--------- EVENT 48 20190706.0413.07 0.089 0.103 0.246 0.038 0.036 0.022 0.000 0.203 0.004 0.098 0.015 0.147 ------0-0--- EVENT 49 20190706.0440.16 0.118 0.095 0.000 0.092 0.201 0.118 0.020 0.119 0.004 0.184 0.000 0.048 --0-----0-0- EVENT 50 20190706.0832.57 0.059 0.097 0.074 0.058 0.075 0.059 0.034 0.197 0.034 0.053 0.159 0.100 ------------ EVENT 51 20190706.0859.55 0.104 0.040 0.004 0.089 0.121 0.082 0.091 0.128 0.104 0.043 0.097 0.098 --0--------- EVENT 52 20190706.1636.04 0.138 0.257 0.039 0.050 0.093 0.116 0.099 0.013 0.048 0.018 0.000 0.128 ----------0- EVENT 53 20190706.2350.41 0.053 0.084 0.029 0.111 0.065 0.085 0.144 0.074 0.052 0.149 0.066 0.089 ------------ EVENT 54 20190707.0538.15 0.118 0.017 0.118 0.098 0.067 0.094 0.106 0.013 0.069 0.096 0.154 0.052 ------------ EVENT 55 20190707.1122.16 0.049 0.064 0.092 0.066 0.090 0.086 0.113 0.105 0.077 0.056 0.099 0.102 ------------ EVENT 56 20190710.2009.51 0.063 0.108 0.082 0.040 0.122 0.085 0.034 0.116 0.075 0.056 0.137 0.082 ------------ EVENT 57 20190711.2345.18 0.070 0.114 0.048 0.108 0.071 0.134 0.103 0.052 0.039 0.141 0.068 0.051 ------------ EVENT 58 20190712.1311.37 0.074 0.067 0.092 0.060 0.065 0.090 0.056 0.119 0.055 0.065 0.133 0.125 ------------ CLUSTER VECTORS: 0.066 0.089 0.054 0.065 0.105 0.089 0.066 0.108 0.084 0.081 0.098 0.095
Event Section
The final section of a summary file lists details of the relocation for all events. The first event from the ridgecrest3.1 run is listed:
CLUSTER EVENT 1 19930520.2014.14 ridgecrest3/19930520.2014.14.mnf MAG 4.2 Cluster vector location parameters: (lat, lon, , origin time) DATE TIME LATITUDE LONGITUDE DEPTH EC**2/NSTA EH**2/NSTA PRMAX DELT PRES FLAG INPUT 5/20/1993 20:14:14.01 36.057 -117.632 0.8 START 5/20/1993 20:14:14.08 36.093 -117.704 13.0 ITER 0 0.01 S 0.16 KM -0.20 KM 0.00 KM 51.3/ 65 0.3/ 6 4.0 94 10 20 ITER 1 -0.01 S -0.14 KM 0.18 KM 0.00 KM 50.6/ 67 0.4/ 6 4.0 94 8 20 ITER 2 0.00 S 0.01 KM -0.01 KM 0.00 KM 50.6/ 67 0.3/ 6 4.0 94 8 20 CUMULATIVE 0.00 S 0.03 KM -0.02 KM 0.00 KM AZIM = 0 DEG DIST = 0.0 KM +HYPOCENTROID 0.00 S 0.01 KM 0.01 KM 0.00 KM TOTAL 0.00 S 0.03 KM -0.02 KM 0.00 KM AZIM = 0 DEG DIST = 0.0 KM SOLUTION 5/20/1993 20:14:14.08 36.094 -117.704 13.0 STANDARD ERRORS 0.05 S 0.004 DEG 0.005 DEG 0.00 KM ELLIPSE: 55.0 DEG 0.8 AND 0.9 KM SOLUTION-INPUT 0.07 S 0.037 DEG -0.072 DEG 12.20 KM AZIM = 302 DEG DIST = 7.7 KM Normalized sample variance for cluster vector: 0.789 ( -1.32)
The first line gives the event number, the event “name” and the pathname to the input (~.mnf) file. Cluster vector location parameters (i.e., free parameters) are usually the same as for the hypocentroid. The starting location for most runs (except the first few, until the command rhdf begins to be used) will normally be different from the hypocenter in the .mnf file.
At each iteration the squared error and number of data are listed both for the event’s cluster vector and its contribution (if any) to the hypocentroid. The cumulative changes in cluster vector parameters are listed and then the changes to the hypocentroid are added to obtain the final location. Standard errors are those of the cluster vector only. The difference between final location and the input location (.mnf file) are calculated.
Finally, the event normalized sample variance is calculated and the “residual” (relative to an expected value of 1.0 and normalized by the spread of event normalized sample variances), discussed in the Cluster Statistics Section, is shown in parentheses. In this case, the spread is 0.161, so:
(0.789-1.0)/0.161 = -1.32
Interpretation of these numbers is not straight-forward, because the expected value of 1.0 is not always representative. In the ridgecrest3.1 relocation the mean of all event normalized sample variances is ~0.79, so this event is not “better than average”, but rather right on the mean for the cluster. Overall, this cluster displays less error than expected between observed and predicted arrival times, even after empirical reading errors are accounted for. One possible cause is the minimum allowed reading error. If many readings are being given artificially large reading errors, the observed discrepancy may be explained. Some clusters deviate in the other direction. The source(s) of these discrepancies have not been investigated. In any case values of the normalized event sample variance greater than ~2 are worthy of some investigation. The event normalized sample variance for each event is also listed in the HDF file. It is usually more convenient to review these values there.