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TELESEISMIC LOCATION TECHNIQUES AND THEIR APPLICATION TO 
EARTHQUAKE CLUSTERS IN THE SOUTH-CENTRAL PACIFIC 

BY THOMAS H. JORDAN AND KEITH A. S V E R D R U P  

ABSTRACT 

Improved methods for single- and multiple-event hypocenter determmations 
are developed and applied to the problem of locating earthquake clusters in the 
South-Central Pacific Ocean. Bayesian statistical methods are used to incorpo- 
rate a priori information about arrival-time variance into the derivation of hypo- 
center confidence ellipsoids, permitt ing a more realistic calculatton of crttical 
parameters in the case where the number of stations ts small. The diagonal 
elements of certain projection operators, called "data importances" by Minster 
et al. (1974), are used to evaluate network balance. The hypocentroid of an 
event cluster is defined to be the average Iocatton of events within the cluster, 
and the deviations of individual hypocenters from the hypocentro=d are called 
cluster vectors. The problem of estimating the cluster vectors can be decoupled 
from the problem of estimating the hypocentroid by a simple but fundamental 
mathematical result, here termed the hypocentroidal decomposit ion theorem. 
The algortthm based on this analysis appears to have many advantages over 
other published methods for multiple-event Iocatton, both in its eff icient use of 
available informatton and its computational speed. The application of this 
method to three clusters of shallow intraplate seismicity in the South-Central 
Pacific, designated Regions A, B, and C, demonstrates that the seismicity within 
each cluster is very localized; the rms lengths of the cluster vectors for each 
group of epicenters are estimated to be only 9, 6, and 12 km, respectively. 
Estimates of the epicentroids are 

Region A (4 events) 7.40 ± 0.023°S 
Region B (3 events) 18.40 ± 0.018°S 
Region C (7 events) 20.76 ± 0.015°S 

INTRODUCTION 

1 4 8 . 2 1  _ 0.026°W 
1 3 2 . 8 7  _ 0.018°W 
1 2 6 . 9 5  _ 0.019°W. 

The intraplate seismicity of the South-Central Pacific Ocean has been mapped by 
Talandier and Kuster (1976) and Okal et al. (1980) using the 15-station French 
Polynesian Network and global station arrays. During the recording period 1965- 
1979 low-magnitude activity was diffusely distributed throughout the area comprised 
by these studies, but most of the seismicity, including 13 of the 17 earthquakes with 
mb -> 4.9, was concentrated at three discrete localities, designated Regions A, B, and 
C (Figure 1). Over the past 15 yr these localities have been the most intense centers 
of seismicity wthin the Pacific plate interior, excluding Hawaii, and together have 
accounted for more than 90 percent of the seismic energy release in the South- 
Central Pacific. Focal mechanisms obtained in Regions A, B, and C have nearly 
horizontal, NW-trending compressional axes oriented approximately parallel to the 
direction of Pacific plate motion, an observation which led Okal et  al. (1980) to 
conclude that the mechanisms are indicative of a regional tectonic stress field, rather 
than locally disturbed stress patterns. 

A regional stress field with small lateral variation does not account for the 
tendency of earthquakes in the South-Central Pacific to be spatially localized, 
however. As Okal et al. (1980) have noted, this conspicuous aspect of the seismicity 
suggests the existence of inhomogeneities within the oceanic plate that act to 
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concentrate stress or to weaken the lithosphere. The characterization of these 
inhomogeneities remains an important problem of oceanic intraplate tectonics. 

Accurate location of the seismicity is essential for this purpose, especially to 
permit the correlation of epicenters with potentially diagnostic bathymetric features. 
Based on the times of water multiples ( p n w P  phases) from events in Regions A, B, 
and C, Okal et al. (1980) concluded that the hypocenters are very shallow, probably 
lying within the oceanic crust. Using this information they relocated some of the 
larger events by standard location procedures. 

This paper reexamines various aspects of the location problem, with an emphasis 
on techniques for constraining the "epicentroids" of seismic clusters as well as the 
relative displacements of events within a cluster. Several improvements to standard 
location algorithms and hypothesis-testing procedures are devised and implemented 
in this context. 
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FIG 1 Map of the South-Central Pamfic Ocean showing the locations of Reg]ons A, B, and C. 

ARRIVAL-TIME DATA 

The set of 14 events selected for study comprised 4 earthquakes from Region A, 
3 from B, and 7 from C (Table 1). Two of the Region C events (C3 and C4) do not 
appear in the catalog of Okal et al. (1980), but  have been recently identified by the 
International Seismological Centre (ISC) during their routine searches of reported 
times (R. D. Adams, private communication, 1980). Each event was large enough 
(rob => 4.7) to be recorded by 20 or more stations at teleseismic distances. P-wave 
arrival times were read from short-period vertical-component seismograms by the 
authors or obtained from ISC or United States Geological Survey (USGS) bulletins• 
Although good Pn phases were recorded for most events on stations of the French 
Polynesian Network, these first arrivals were excluded from the analysis because 
their concentration at certain azimuths and their anisotropic propagation speeds 
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(Talandier and Bouchon, 1979) could bias the locations. P K P  phases and arrivals 
with very large residuals (>5 sec in magnitude) were also excluded. 

The resulting distributions of arrival-time data are displayed in Figure 2. Although 
the stations recording the earthquakes tend to be concentrated in the northeastern 
(North America) and southwestern (Australia) quadrants, the azimuthal control is 
reasonably good. Relatively few stations recorded all events in each cluster, however. 
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FIG 2 Distributions of arrlval-ttrne data for Regions A, B, and C plotted on azimuthal equidistant 
projections centered on the epieentrolds; north zs up, and circles are drawn at intervals of 30 geocentric 
degrees. 

A prmr~ estimates of the observational uncertainty were assigned to individual 
readings. High-quality picks made by the authors, which included about 50 per cent 
of the data for A1 to A4, 20 per cent for C2, and 10 per cent for C6, were generally 
assigned standard errors of +0.7 sec, whereas low-quality readings and bulletin times 
were assigned errors of +_1.0 sec. These values are consistent with our previous 
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experience and the estimates of other authors (e.g., Freedman, 1967; Evernden, 
1969a). An assessment of the uncertainty in these a p r t o r t  values of observational 
error and its impact on location confidence ellipsoids is a subject of our investigation. 

SINGLE-EVENT LOCATION 

Geiger's (1910) iterative, least-squares method and its various extensions and 
modern improvements (e.g., Flinn, 1965; Buland, 1976) are the basis of nearly all 
numerical algorithms for earthquake location, including those discussed here (see, 
however, Lomnitz, 1977). A point seismic source is specified by a space-time vector 
x of dimension M _-< 4, the inequality pertaining whenever certain components, such 
as depth, are fixed throughout the calculation. This location vector is to be con- 
strained by an N-component vector of observed arrival times t °. Formally, x C E  M 

and t ° E E  N, where E N is the Euclidian space of dimension N. Since the number of 
observation points N is usually large compared to M, the problem is over-deter- 
mined, although it may still be ill-conditioned. From an initial estimate Xo, an 
arrival-time vector t(x0) is calculated by tracing rays through an average radial 
earth structure; the overbar indicates the assumption of spherical symmetry and in 
this paper always refers to the theoretical times of Herrin (1968). By expanding [ 
about x0 we can write 

At -= {(x) -/(Xo) = A.Ax + O[IAxl ~] (1) 

where Ax -- x - x0 and A is an N × M matrix of partial derivatives evaluated at Xo. 
If rank [A] = M, as shall be supposed, a refined estimate of x can be uniquely 
obtained from the residual vector A t  ° =- t ° -- t ( xo )  by minimizing a squared norm 
of the error vector 

e ° = A t  ° - A . h x .  (2) 

To account for the curvature of the i(x) manifold, the estimate of Ax is added to Xo 
and the procedure is iterated to convergence, which is usual~, y rapid in the teleseismic 
case. 

Nonlinear effects have been discussed by Flinn (1965), Buland (1976), and Spence 
(1980), among others. In certain situations, especially for hypocenters determined 
by sparse local networks, the nonlinear aspects of the problem can be important. 
For teleseismic location refinements of the sort discussed here, however, where the 
hypocentral displacements and confidence-ellipse dimensions do not exceed 100 km, 
a linear analysis completely suffices (see, e.g., Spence, 1980). Therefore, terms of 
higher order than the first in equation (1) are ignored throughout our analysis. 

E s t i m a t i o n  p r o c e d u r e .  The residual vector A t  ° is considered to be a sample of a 
stochastic process A t expressible as the sum of two terms 

A t  = A t  + n .  (3) 

The first term is defined by the equation 

A . A x  = A t  (4) 

and the second is a noise process. The noise process is presumed to be normally 
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distributed with mean r and a variance matrix V,,; i.e., 

( n }  = r (5) 

( (n - r ) (n  - r) T) = V~. (6) 

Here, as elsewhere, the angle brackets denote the expected value. The vector r 
includes the bias introduced into At  ° by ellipticity, station elevation, instrumental 
group delays, station anomalies, etc., whereas Vn represents the dispersion caused 
by reading errors, timing errors, and other sources of random or quasi-random noise. 

Estimates of r and V~ may be available, but neither is precisely known. A goal of 
the analysis is to account for the imprecision of this information in the estimation 
and hypothesis-testing procedures. Of course, statistical assumptions that  are un- 
justified, or justified only by the lack of contradictory data, must be made in order 
to permit a feasible solution. 

Let f be an estimate of the bias vector that includes an observed set of mean 
station anomalies. For simplicity f is taken to be a sample from a normally 
distributed random process with mean r and a diagonal variance matrix Vr whose 
nonzero elements are set equal to the sample variances of the station anomalies. To 
the extent that these conditions are correct, making the substitutions 

A t  ° - f - - ~  A t  ° (7)  

Vn + Vr-* Vn (8) 

redefines the noise process n to have zero mean. In so doing, the noise variance is 
increased in proportion to the variance assigned to the bias. The increase can be 
substantial for station anomalies computed from a small number of events. The 
station anomalies used here, however, are those of Poupinet (1979), derived from a 
very extensive set of ISC P-wave residuals; their formal standard errors never 
exceed 0.1 sec and therefore contribute insignificantly to the travel-time variances, 
although, to the extent that  station anomalies do not completely account for the 
path anomalies appropriate to these particular events, some bias will remain. 

Nevertheless, it is supposed for the moment that  this procedure removes all bias 
from At  °, so that  

( A t )  = A t  (9)  

( ( A t -  A t ) ( h t -  At) T) = Vn. (10) 

Furthermore, the variance matrix Vn is taken to be diagonal and, within a constant 
factor, to be known exactly; in other words, a diagonal matrix f r  is specified such 
that  

y n =  ,2f~o (11) 

for some (possibly unknown or poorly known) value of ~2. This choice assumes the 
errors in the elements of At to be uncorrelated, and it fixes the ratios of their 
variances. 

The classical solution to this inverse problem is to require the estimate to 
maximize a likelihood function proportional to e x p [ - l e  °. Vn-l.e°]. Under the 
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statistical assumptions stated here, the maximum-likelihood esnmate can be ob- 
tamed by minimizing with respect to Ax the squared norm of a scaled error process 

= A i - A . A x  (12) 

for any element of its ensemble, where the carat denotes normalization by the 
"standard-deviation" matrix lgn 1/2 

h i -  Vn-'/2.At (13) 

2~ = ~Tn-1/Z.A. (14) 

This yields 

AX = ~ t . , ~ £  (15) 

The matrix operator ~{* is the "generalized inverse" of 2{ (Penrose, 1955), which we 
compute by singular-value decomposition (SVD); a description of the SVD algorithm 
and its application in this context is given by Golub and Reinsch (1971). 

The generalized inverse has the properties that 2{*.2{ = I (M) is the identity 
operator on E M, and 

P =  i{.A* (16) 

is the orthogonal projection operator that maps E N onto the subspace spanned by 
the columns of A. The subspace is M dimensional if, as we assume, A has full rank. 
Hence, the matrix 

Q = I  (NI - P  (17) 

is the projection operator onto the (N - M) dimensional null space of ft,. Using (15) 
in equation (12), we find 

e = Q .  A~. (18) 

Minster et al. (1974) call the diagonal elements of P da ta  importances,  because 
these quantities describe the weighting given to particular data in the computation 
of the least-squares estimate. Each data importance is a scalar lying between 0 and 
1, and they are additive: the sum of all data importances equals the rank of A, in 
this case M. Other properties and examples of their applications are discussed by 
Minster et al. (1974) and Minster et al. (1977). As we shall see, data importances are 
useful in assessing earthquake location estimates in the South-Central Pacific. 

The particular estimate of h x  available to the observer is ha~ °, obtained by 
substituting A/v into equation (15); under our statistical assumptions, it represents 
one realization of a normally distributed stochastic process ha?, whose mean and 
variance matrix are easily shown to be 

(A.{.)  = h x  

Vx -= ((A.~ -- Ax)(A.~ -- hx) r) = v2~x 

(19) 

(20) 
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~ = (~T.fi~)-l. (21) 

Similarly, the moments  of the normalized error  vector  are 

( ~) = Q .  ( ,~ t )  = Q .  fi, . A x  = 0 (22) 

( ~ v )  = Q. (A~A~T).Q = v2Q. (23) 

Its squared length ~2 = ~. ~ is X 2 distr ibuted and has the expected value 

(e 2) = v 2 tr  Q =- v 2 ( N -  M).  (24) 

Thus,  the random variable ~2/p2 is X 2 distr ibuted with N - M degrees of freedom. 
These  results are, of course, just  those of classical least-squares analysis. 

Confidence ellipsoids. In constructing confidence ellipsoids about  A2 °, the ran- 
dom variable of interest  is 

k 2 = ( ~ x  - ~ ) T .  ? x - l . ( h X  _ h~) .  (25) 

A critical value ~2 is sought for some a~(0 ,  1) such tha t  the probabil i ty of k 2 
exceeding ~2 is a. The  set of all vectors ~ x '  tha t  satisfy 

(~X z -- A20) T ~x-1.  ( h x '  - h:~ °) = < ~2 (26) 

is called the 100(1 - a) per cent  confidence ellipsoid of A~ °, and, for any vector  Ax" 
tha t  does not  obey (26), the hypothesis  tha t  Ax"  = h x  can be rejected at  the 100(1 
- a) per cent  confidence level. 

Equat ions  (19) and (20) yield 

(k 2) -= V x - l : V x  -~ p2M (27) 

f rom which it is seen tha t  k 2 / 2  is X 2 distr ibuted with M degrees of freedom. Suppose 
it is known a priori  tha t  v 2 = 1; then,  V, = ~n and 

~ 2 = x 2 [ M ]  (28) 

where X,2[M] is the critical value of X 2 for M degrees of freedom. In s tandard  
location algorithms, however, the assumption tha t  v 2 = i is not  made, bu t  ra ther  the 
normalized sample variance 

~2 = i~o 12/(N _ M)  (29) 

is used to est imate ~2 aposter ior i  (e.g., Flinn, 1965). Th e  ratio ( N  - M ) k 2 / M ~  2 is F- 
distr ibuted with M and N - M degrees of freedom, so, lett ing F,[M,  N - M]  be the 
corresponding critical value, we obtain 

~J = M~2F,[M, N - M].  (30) 
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This is the usual expression for regression estimates. 
Evernden (1969a) has criticized the application of equation (30) to the teleselsmic 

location problem on the grounds that, as N becomes small, the confidence ellipsoids 
become unrealistically large. Instead, he advocates the use of equation (28). Evern- 
den's criticism is certainly justified; the critical value given by (30) diverges as N 

M because no prior information is assumed to exist regarding v 2, which is untrue. 
His remedy is not justified, however; the value given by (28) assumes V, to be 
perfectly known, which is also untrue. 

A more satisfactory solution to this long-standing problem can be obtained by 
adopting the Bayesian technique of imposing a prior distribution on v 2 to describe 
how well the noise variance matrix is thought to be known before any estimate of 
Ax is made. Our procedure shall be outlined without formal derivation; general 
descriptions of the Bayesian methodology on which the analysis is based are given 
by Jeffreys (1961) and Cox and Hinkley (1974). The results are simple, however, 
and can be heuristically motivated by supposing that v 2 has been previously 
estimated by a normalized sample variance ~o 2 from an experiment with K degrees 
of freedom; then, an estimate of v 2 "updated" with the new information contained 
in A t  ° is 

K ~ o  2 + [~0{2 

K + N - M "  
(31) 

In such a case, it would seem reasonable to replace ~2 by (31) and N - M by K + N 
- M in equation {30). 

The Bayesian arguments for this procedure begin by supposing that l?, is the best 
estimate of Vn constructed from previously available information, so that, a priori,  
v-2V, can be considered a stochastic process with an expected value of lYn. A natural 
choice for the prior distribution is to take K / v  2 to be a X 2 random variable with K 
degrees of freedom; the parameter K then controls the variance of v -2 about unity 

((V -2 - -  1)2) = 2/K.  (32) 

The prior density function imposed on the reciprocal v2/K is the so-called inverse- 
~, distribution (Cox and Hinkley, 1974, p. 371) with K degrees of freedom and an 
expected value equal to (K - 2)-1. For the problem at hand, the inverse-,/distribution 
is conjugate to the normal distribution assumed for At; therefore, the posterior 
distribution of v 2 is itself an inverse-~, distribution. Using Bayes's theorem it can be 
easily shown that, conditional on the event At = A t  °, the variable v2/(K + [ ~o[2) is 
inverse-• distributed with K + N - M degrees of freedom and an expected value of 
(K ÷ N - M - 2) -1. Hence, its reciprocal is X 2 distributed with K + N - M degrees 
of freedom, and we obtain 

~ 2 = M~2F,[M, K + N - M ]  (33) 

where 

, ~2  _ K +  I ~ ° l  ~ 
K + N - M" (34) 

In these expressions the parameter K is allowed to vary continuously on the 



1114 T H O M A S  H.  J O R D A N  A N D  K E I T H  A. S V E R D R U P  

interval [0, ~). K = 0 corresponds to the assumption of no prior information about 
2, in which case the expressions for ~2 and ~2 reduce to equations (29) and (30), 
respectively. As K --~ ~, s ---) 1, and ~2 reduces to (28), corresponding to the 
assumption of exact prior information; viz., ~2 = 1. Thus, the procedures of Flinn 
(1965) and Evernden (1969a) appear as limiting cases. 

In theory, if the noise processes represented by n depended only on station 
characteristics or other stable parameters and were stationary with respect to source 
location and origin time, then K could be specified as the total number of degrees of 
freedom in all previous experiments used to derive ~,,  which, after some time, could 
be very large. In practice, however, allowances must be made for the various types 
of nonstationarity that cause V, to vary from experiment to experiment: lateral 
heterogeneity, source magnitude, seismic noise modulation, and so forth. 

We shall therefore adopt a "subjectivist's" strategy and specify K according to an 
assumed uncertainty in the standard deviation variable ~ =- ~-1, whose square has 
the X ~ prior distribution given by (32). Using formulae listed by Zelen and Severo 
(1972, p. 943), we find 

( 1)1J2[ 1 
(~) = 1 - ~ - ~  1 + 1 6 K ( K _ l )  +@(K-4) 

1 1 1 
( ( ~ _  (~) )2)__2K 8K 2 16K ~ + @(K-4)" 

(35) 

(36) 

The standard deviation of ~, 

s.d.[~] = ( ( ~ -  (~))2)1/2 (37) 

is a convenient measure of the uncertainty in Vn; K is plotted as a function of s.d.[~] 
in Figure 3. 

The s.d.[~] could itself be formally estimated in conjunction with IYn from an 
ensemble of location experiments, but to our knowledge no results have been 
published. However, based on our experience and that of other authors (e.g., 
Freedman, 1967; Evernden, 1969a), we are willing to assert that  10 per cent < 
s.d.[~]< 40 per cent. This subjective assessment implies 50 > K > 2.8. For the 
purposes of calculation we have adopted (and recommend for standard usage in 
teleseismic location) the intermediate value of s.d.[~] = 25 per cent, yielding K = 8. 

Table 2 illustrates the effect of this choice on the average size of 95 per cent 
confidence ellipsoids. The parameter ~2/~2 (which scales as cross-sectional area) is 
listed for M = 3 and various values N for three cases: K = 8, and the two limiting 
cases K = 0 (completely a posteriori) and K = ~ (completely a priorD. Clearly, 
incorporation of prior information about the probable range of ~, even the relatively 
low-grade information implied by K = 8, significantly reduces the expected size of 
the confidence ellipsoids relative to the standard regression method when the 
number of stations is small (N -<__ K + M), thus overcoming the objections of 
Evernden (1969a) to the use of F-statistics in the teleseismic location problem. Of 
course, when the number of stations is large (N >> K + M), the information 
contained in A t ° dominates over the prior information, and the difference between 
the Bayesian and regression procedures is very small. 

Apphc a t i on  to Regions  A,  B, and  C. In the application of these procedures to 
earthquakes in the South-Central Pacific, the hypocentral depths were fixed at 10 
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kin, in accordance with Okal et al.'s (1980) analysis ofpnwP phases; hence, M = 3. 
The  locations derived from equation (15) are listed in Table  1, and the epicenters 
are plot ted on Figure 4. The  s tandard deviations m Table  1 and the 95 per cent 
confidence elhpses on the figures correspond to marginal distributions with M '  = 1 
and M '  = 2, respectively, for which the variance matr ix Vx" is the appropriate  M '  
× M '  submatr ix  of Vx and the critical parameter  is 

~ ,2 = M , ~ F , ( M , ,  K + N - M ) .  (38) 

100 

K lO 

t t--- 
0 0  

I I I I 

\ 

0.2 0 4  0 6  

s O. 
FIG 3. The Bayesian parameter  K plotted against the s tandard deviation of ~, calculated from 

equation (36) The chome of s.d.[~] = 25 per cent lmphes K = 8, which is the value used m the single- 
event locations 

TABLE 2 

VALUES O F  K 2 / 8  2 = MF,~(M,  K + N - M )  FOR a ~ 0.05 
ANDM = 3 

N K = 0  K = 8 *  K = ~  

5 57 48 11 13 7.80 
10 13 05 9 87 7.80 
15 10 47 9 30 7 80 
20 9 60 8 97 7 80 
30 8 88 8.64 7 80 
50 8 44 8 34 7.80 

100 8 13 8 I0 7 80 
7 80 7 80 7.80 

* Recommended value for teleselsmac location 
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(A discussion of marginal  distr ibutions in the context  of the location p rob lem is 
given by  Flinn, 1965.) The  value of K = 8 was assumed,  but, because N equals 20 or 
greater  for every event,  the  differences in the critical p a r a m e t e r s  for K = 0 and K 
= 8 are slight (Table 2). 

The  fit to the arr ival- t ime data, as measu red  by  the p a r a m e t e r  ~, conforms to our 
a prmr i  expectations:  the individual values of ~ range f rom 0.73 to 1.10, with a m e a n  
of 0.88 (Table  1), commensu ra t e  with the value ~ - i _+ 0.25 implied by K = 8. Only 
four residuals had  magni tudes  exceeding 3 sec out  of  a to ta l  da ta  set  of 640, and in 
all cases these were associated with very  low data  impor tances  (~0.04). 

D a t a  impor tances  are useful not  only in assessing the  impac t  of possibly spurious 
readings, but  also in moni tor ing "ne twork  balance."  I f  too m u c h  impor tance  is 
concent ra ted  at  a par t icular  azimuth,  the location is par t icular ly  susceptible to bias 
in t roduced by  uncorrec ted  p a t h  anomalies.  Th is  is a possible danger  for Region A 

i i i i i ~ -  T ~  i 205~$ , i i i ~ J  i i t ~ i 

72°S i ~  IOkm IOkm 18~°S IOkm 

7 5°S ~ 18 5°S I A I • 

A I L I - I I I I I I I I I o -  o 148 4 w 148 o W 133 0 V~ 152 8 W l~Tlo~w 126 5=w 

FIG 4 Single-event epmenters and 95 per cent confidence ellipsoids for earthquakes m Regions A, B, 
and C (h = 10 km); event numbers correspond to Table 1. 

TABLE 3 

DISTRIBUTION OF STATIONS AND CUMULATIVE DATA IMPORTANCES FOR SINGLE-EVENT LOCATIONS IN 

REGION A BY QUADRANTS 

Number of Stations Cumulative Data Importance 
Event 

NE SE SW NW NE SE SW NW 

A1 34 4 3 1 1.38 0 72 0.85 0.05 
A2 36 0 4 2 1 62 0 1.26 0.12 
A3 25 2 6 4 1 32 0 31 1.14 0.23 
A4 19 0 4 4 1 50 0 1.23 0.27 

events,  for example,  since all bu t  a small  f ract ion of the repor t ing s ta t ions are within 
a narrow range of az imuths  in the  nor theas te rn  quadran t  (Figure 2). For tunate ly ,  
the  az imuthal  dis t r ibut ion of da ta  impor tance  is not  near ly  so lopsided as the  s ta t ion 
distr ibution (Table  3). The  SE and N W  quadran t s  are not  well represen ted  in ei ther  
distribution, bu t  there  is a reasonably  good balance in the  par t i t ioning of da ta  
impor tance  be tween  the N E  and SW quadrants .  

T h e  ne twork  balance  for events  in Regions B and C is general ly as good as or 
be t t e r  t han  tha t  for Region A, with the  exception of event  C7 for which 28 of 32 
s ta t ions are concent ra ted  in Nor th  America.  For  this event  the  cumula t ive  da ta  
impor tance  in the N E  quadran t  is very  high (1.97). The  poor  s ta t ion  distribution, in 
par t icular  the lack of control  in the SE and N W  quadrants ,  is also reflected in the 
large 95 per  cent confidence ellipse associated with  the C7 epicenter  and in the  NW- 
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SE trend of its major axxs. All of the other Region C locations except C5 lie within 
this confidence ellipse, so the displacement of C7 to the SE side of the cluster may 
not be significant. 

In fact, there is generally substantial overlap among the 95 per cent confidence 
ellipses within all three clusters, suggesting that the source regions for these events 
may be very small. Further quantification of this hypothesis is the primary goal of 
the next section. 

MULTIPLE-EVENT LOCATIONS 

Multiple-event location procedures are founded on the observation that the noise 
contaminating travel times from a set of nearby earthquakes or explosions tends to 
be strongly correlated; in particular, the error introduced by incorrect assumptions 
regarding earth structure (e.g., spherical symmetry) has a nearly constant value for 
times measured at the same station. Since path-correlated noise of this type 
dominates the sample standard deviations computed for single-event locations 
(Freedman, 1967), the relative locations of events within a seismic cluster can be 
improved by taking these correlations into account. Various algorithms have been 
devised for this purpose (Freedman, 1967; Douglas, 1967; Evernden, 1969b; Dewey, 
1972; Ansell and Smith, 1975; Veith, 1975; Spence, 1980). Behind all such algorithms 
is a simple yet fundamental mathematical result, termed here the hypocentroidal 
decomposition theorem. Although some of its implications are obvious and have 
been clearly recognized by previous authors, the theorem itself, to our knowledge, 
has never been precisely stated or formally proved. We do this below. We then 
formulate a multiple-event location algorithm based on this analysis that is efficient 
in both its use of available information and its computational speed, and we apply 
it to events in Regions A, B, and C. The algorithm appears to have many advantages 
over other published methods for multiple-event location. 

In setting up the problem it will be worthwhile to develop a compact notation. 
Let us suppose there are P closely grouped events to be analyzed whose (unknown) 
location vectors relative to a reference point Xo are (hx ,  E EM; p = 1, 2, . . . ,  P}, and 
let each be constrained by Np arrival-time observations contained in a residual 
vector htp° E E Np. Because a common space-time reference point has been chosen 
for all P events, the components of htp° and the origin-time component of Axp may 
share a large additive constant; this is of no consequence in the analysis, since the 
relationship between origin time and residual is strictly linear. The total number of 
unknown parameters is M T  -~ M P  ~ 4P, and the total number of data is N T  -~ 

E [P Np. As in the case of single-event location, ~ tp ° is considered to be a sample p ~ l  

of stochastic process h t p =  ~tp + rip, where ~tp  is the arrival-time difference 
computed from a spherically symmetric earth structure and np is a Gaussian process 
with a mean rp and a variance matrix Vn . Again it is assumed that the spatial 
components of hXp are small enough so that the linear relationship 

Ap.axp = htp (39) 

is an adequate approximation, where the partial derivatives in the Np × M matrices 
Am are all evaluated at the common reference point Xo. 

Suppose the set of vectors {Atp °} consists of residuals observed at a set of Q 
stations. Then, Np ~ Q for all p = 1, 2, . . . ,  P, and each matrix A m consists of a 
subset of row vectors from a Q x M matrix Ao defined such that A0. Axp i s t h e  Q- 
component vector of theoretical residuals at all Q stations and contains ~,tp as a 
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subset; in other words, A0 comprises all of the partial derivatives needed at xo. It 
will be convenient to write 

Ap = Bp.Ao (40) 

for some matrix Bp. By definition, Bp is just the Np × Q matrix whose (j, q)th 
element equals unity if the ] th  residual h tp ° is from the qth station and is zero 
otherwise. 

If s @ E Q is the vector of path anomalies appropriate to this particular set of 
events, then the assumption that the bias is path-correlated can be expressed by the 
equation 

rp = B , . s .  (41) 
The problem of specifying the set of vectors {rp} is thus reduced to the problem of 
specifying s. 

To compose the various vectors described above into a single system of equations, 
a simple notation is employed: AX ~ E MT, A T  ° E E NT, and R E .E NT are defined to 
be the partitioned column vectors with subvectors {hxp}, (htp°}, and {rp), respec- 
tively. For example, 

A X =  

(42) 

Similarly, d and ~ are defined to be the NT × MT and NT × NT partitioned 
matrices whose P diagonal submatrices are {Ap} and {Vno}, respectively, and whose 
P ( P  - 1) off-diagonal submatrices are zero; e.g., 

= 
IA i I 00_ 

I - -  
I o 

...i ° 
%" I 
"°° [ (43) 

Hence, the vector A T ° is a sample of a Gaussian process 

A T =  A T + N  

specified by the following equations 

(44) 

d . h X  = AT (45) 

(N) -- R (46) 

( ( N -  R ) ( N -  R )  T) = ~/n = p2~n. (47) 

To incorporate the assumption of path-correlated bias, we define the NT X Q 
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partitioned matrix 

(4s) 

so that  the bias vector can be written as 

R = ~ . s  (49)  

for any given set of path anomalies s. 
The unbiased, minimum-variance estimate of h X  is obtained by minimizing the 

squared norm of the error process. 

g, = A ~ ' -  ~ . s  - ~ . a i .  (50) 

Here, in analogy with the single-event case, the carat denotes normalization by the 
standard-deviation matrix ~n 1/2; e.g. A ~ = ~,-1/2. ~ T. The solution to this problem 
is again found by applying the generalized inverse to the bias-corrected residual 
vector 

4 2  = ~ t . ( a $ -  :g.s).  (51) 

In fact, if the same set of path anomalies is used in (7) and (51), the estimates given 
by (15) and (51) are identical. 

P r e v i o u s  work.  Of course, the problem with applying equation (51) is that the 
path anomaly vector s is generally not known a pr ior i .  One set of techniques for 
dealing with this lack of information is based on the use of only arrival-time 
differences at particular stations to constrain relative locations (e.g., Ansell and 
Smith, 1975); such differences are clearly independent of s. These so-called homo-  

geneous-s ta t~on  m e t h o d s  are simple to implement with codes written for single- 
event location, but they make very inefficient use of the available data. For example, 
of the 68 stations reporting times for the Region A earthquakes listed in Table 1, 42 
recorded 2 or more events, but only 15 recorded all 4 events. Thus, 27 stations with 
information about the relative locations of Region A events would have to be deleted 
in order to apply a homogeneous-station method to all 4 events. For Regions B and 
C, respectively, 24 of 36 stations and 59 of 68 stations would have to be deleted to 
insure homogeneity. 

Another set of methods for mnltiple-event location assumes a pr ior i  knowledge 
of ~xp  for some p, say, p = 1. The m a s t e r - e v e n t  t echn ique  (e.g., Evernden, 1969b) is 
to choose the elements of s to equal their corresponding elements in the error vector 
el ° = At1 ° - A l . ~ x l .  Obviously, the method requires that  the "master event" (p 
= 1) be recorded at all stations used in the multiple-event location scheme. Like the 
homogeneous-station methods, the master-event technique is easy to implement, 
but it also requires the deletion of useful data. In the case of Region A, only 32 
stations recorded the best master event (A1) and at least one other earthquake; 
hence, 10 stations with information about relative locations would have to be 
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discarded, including several at azimuths not well represented by the reduced station 
set. 

A less restrictive technique is the method of joint  hypocenter determination 
(JHD), developed by Douglas (1967) and Dewey (1971, 1972) and applied by Blamey 
and Gibbs (1968), Fairhead and Girdler (1969), Billington and Isacks (1975), and 
Pascal et al. (1978), among others. In the JHD method the error criterion IE] 2 
derived from (50) is minimized with respect to variations in both 5 X  and s; estimates 
of AX and s are thus derived by simultaneous inversion. The linear system resulting 
from this minimization is ill-conditioned (in our formulation, it is singular), so side 
constraints are usually imposed to stabilize its inversion, often by fixing the location 
of a master event {Douglas, 1967; Dewey, 1971) or the path anomalies to a set of 
"calibration stations" {Dewey, 1978). {Stabilization could equally well be accom- 
plished by truncating the singular values of small magnitude in the SVD computa- 
tion of the generalized inverse, but evidently this has not been attempted.) Besides 
the assumption of ad hoc side conditions, the JHD method has the distinct 
disadvantage of requiring the solution to a system of equations that increases in raze 
approximately as Q2. More precisely, the matrix system has dimension NT' × [MT 
+ Q' - M], where NT' is the number of elements of A T ° corresponding to the Q' 
stations with two or more arrival times. In the case of Region C, for example, this 
system has dimension 230 × 89. 

Given the large capacity and rapid speed of available computers, the solution of 
such a system is quite feasible. As shall be seen, however, it is not at all necessary. 
A procedure for multiple-event location has been developed that not only eliminates 
the need for fixing a master event but also requires at most the solution of a n  NT' 
X MT linear system. The theoretical foundation for the algorithm rests on a 
particular decomposition of the error vector E. 

Hypocentral decomposition. The set of location perturbations (AXp; p = 1, 2, 
. . . ,  P )  has the decomposition 

hxp = hxo + 8xp (52) 

where 

£Xo --- p-1 ~=1  hxp (53) 

~P=l 8xp -- O. (54) 

We shall call x0 + ~Xo the hypocentroid and (Sxp} the cluster vectors of the event 
group. 

Let 8X be the MT-component column vector with subvectors {Sxp; p - 1, 2, • •., 
P}, and let hX0 be the MT-component column vector whose P subvectors all equal 
Ax0; then, equation (52) can be written 

a x  = hXo + t~x. (55) 

An MT × M matrix ~ maps hXo into AXo 

AXo = ~ .~x0 .  (56) 
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In terms of the identity on E M, 

II~M) 1 

~,~= / I ~  -M)] P partitions. 

(57) 

Clearly, ~ T .  JiZ = p[(M), and the generalized inverse of JC is ~ = p - I ~ T ;  hence, 
the operator that projects vectors in E Mr onto the range space of ~ is ~H = P-~H-  
X T, and its complement, projecting vectors in E Mr onto the null space of H t, is 
~-@H = /(Mr) _ ~H. The utility of these operators derives from the fact that, for any 
A X  ~ E Mr, 

Axo = ~ . . A x  (58) 

$ X  = ~H.AX.  (59) 

These matrices thus specify the decomposition of AX into a unique hypocentrold 
vector AXo and a unique cluster vector ~X. 

Consider now the decomposition of the error vector (50) provided by the comple- 
mentary projection operators ~ = ~ .  ~* and ~ = I I~r) - . ~  

~ .  = ~ .~" (60) 

/~c = ~2ff./~. (61) 

By definition, EHoEc ~" O, SO the squared norm of E is the sum of two terms 

]~]2 = [~H[2 -4-IEcl z (62) 

From equations (40), (43), (56), and (57) it is easily seen that 

~-AXo = ~.Ao-AXo. (63) 

Therefore, ~ g . J . A X 0  = ~.Ao.hXo, ~ . x ] . A X 0  = 0, and the expressions for/~H 
and/~c reduce to 

t~ .=  ~ . a ~ -  ~ . s -  $.A0.AXo- 2 ~ . ~ . ~ X  (64) 

Ec = ~ . A ~ - -  Z~.~.SX.  (65) 

These equations constitute the hypocentroidal decomposition theorem. Their re- 
markable form immediately suggests an algorithm for estimating the cluster vector 
and the hypocentroid. Since the path anomaly vector s does not appear in equation 
(65), an estimate of 8X independent of s can be first obtained by minimizing I Ec 12. 
Then, using this estimate in equation (64), an estimate of Axo can be found by 
minimizing I EH ] 2. 

Before investigating this procedure in detail we give an easily computed formula 
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for the projection operator ~ based on the expression 

~ = ~ .  ~ t  = Z~. ( ~ V .  ~ ) - 1 .  ~T .  (66) 

The column vectors of ~ are mutually orthogonal, so ~T. ~ is a Q × Q positive- 
definite diagonal matrix expressible as the square of a positive-definite diagonal 
matrix W 

:~T. ~ = W 2 = diag(w12, w22, . .  ", wq2).  (67) 

The q th  diagonal element of W e is 

w~ ~ = 2Yz,  B+q~+ -2 (6s) 

where Bjq is the (y, q)th element of ~ (a one or a zero) and 5+2 is the j t h  diagonal 
element of $/~. Let q ( j )  E (1, 2, . . . ,  Q} be the station index corresponding to the 
j t h  residual (i.e., B+q(+) = 1), and define the NT X NT matrix 

f l, if the ith a n d j t h  residuals are from 
As+ = the same station 

0, otherwise. 

Then, it is clear from equation (66) that the (i, j ) th  element of =@~ is 

[ ¢~BJI, J = Wq<j>-2~+- lo j - l i i , j .  

In terms of the Kronecker delta 6,j, the (i, j ) th  element of :~g is 

[ ~B]tJ  = ~lJ --  W q < y ) - 2 ~ - l o j - 1 A z j  • 

(69) 

(70) 

82 = ( ~ . / ) + .  ~ . a ~ .  (72) 

The minimum is clearly not unique, since adding any vector of the form • .  h x  to 
(72) does not change /~c. However, equation (72) is the only solution to the 
minimization problem with the property that ~H" ~X = 0 and, therefore, the only 
one yielding an unbiased estimate of the true cluster vector 6X 

= ~ H . A X  

= 6 X .  (73) 

With these formulae projecting vectors in E Nr using either ~ or :+~ can be coded 
very efficiently for machine calculation. 

E s t i m a t m n  o f  t h e  c l u s t e r  vec tor .  One estimate of the cluster vector minimizing 
I/~c 12 is the generalized inverse solution 

(71) 
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The next-to-last equality asserted in (73), though nontrivial, is true as long as ~?has 
full rank. 

Equation (73) implies that the error process obtained by substituting (72) into 
(65) has zero mean: (Ec > = 0. Solving for the second moment yields 

( E C ~ C  T > = /22( ~/~ -- ~Q~) 

(i@~i~> =/22 t r ( ~  - ~QX) 

(74) 

(75) 

where ~e~ is the projection operator whose diagonal elements are the "data 
importances" for this problem 

(76) 

The trace of ~QX,  and thus the sum of the data importances, is M T  -- M = ( P  - 

1)M, the rank of ~#. ~ a n d  the trace of ~H. From equation (71) it is easily seen that 
tr ~ #  = NT -- Q. Therefore, the number of degrees of freedom is 

<lRcl~>/, ,  2 = N ~ , -  Q - ( P  - 1 ) M .  (77) 

The variance matrix of the estimation process can be written as 

- ( ( ~ 2 -  ~x)(~2-  ~x) ~> 
___/22 ~ = # ( ~ T .  ~ .~ # ) t .  (78) 

Hence, the random variable analogous to that defined by equation (25) is 

k J  = (~x - ~2)  T. ~ t .  (~x  - ~2).  (79) 

It has the expected value ( k c  2 > = ~ c t  : ~ c  = p2 ( p _ 1)M, ~o if no a p r i o r l  information 
about v 2 is assumed, the critical value at the 100(1 - a) per cent confidence level 
takes the form 

(~c)o 2 --- ( P  - 1 ) M ~ c 2 F ~ [ ( P  - 1)M, N T  -- Q - ( P  - 1)M] (80) 

where the normalized sample variance is 

~c 2 = I E c ° 1 2 / [ N r -  Q - ( P -  1)M]. (81) 

These expressions could be modified to accommodate a prior distribution on p2 using 
Bayesian arguments identical to those given for single-event locations, but the 
number of degrees of freedom is usually large enough to make this unnecessary. 

As it stands, equation (72) requires the SVD of the NT X M T  matrix ~#. ~ It is 
clear from equations (71) and (76), however, that the arrival-time residual from any 
station recording only one event will have a data importance exactly equal to zero: 
such stations contribute no information about the relative locations of events within 
a cluster. Hence, stations with only one arrival can be deleted from the system 
without changing the estimate 8X, thereby reducing the dimension of the system to 
NT' X MT,  where, as before, N T '  is the number of elements of A T ° corresponding to 
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the Q' stations with two or more arrival times. Since NT' -- Q' = NT -- Q, reducing 
the system of equations in this manner does not alter the number of degrees of 
freedom and leaves the values of (~c), 2 and ~c 2 unaffected. 

Estlmatmn of the hypocentro~d. Equation (64) makes explicit the tradeoff between 
path anomalies and hypocentroidal travel times and, hence, the need to constrain s 
in order to estimate AXo. One could impose a prior normal distribution on s, for 
example, and solve for both s and Ax0 by maximizing the appropriate likelihood 
function; prior information about s could be obtained, say, from an earthquake or 
explosion whose location was independently constrained. Instead, we shall simply 
adopt an estimate ~ that includes ellipticity, elevation, and station corrections, as 
we did in the case of single-event location, and minimize the squared length of (64) 
with respect to &xo, employing (72) as the estimate of ~X. The solution to this 
minimization problem can be written as the difference of two terms 

A~o = A ~ 0 ' -  A~o" (82) 

h~o '=  ( ~ . A o ) * . ( ~ T -  ~ .~)  (83) 

,~:~o" = ( ~ .Ao)* .  ~ . ~ 2 .  (84) 

The fact that  (~.Ao)*. ~ = (~.Ao)* has been used to derive (83) and (84). 
A~o' is just the estimate of hXo obtained by fitting a single hypocenter to the entire 
set of corrected residuals. This estimate is biased, however. Some manipulation 
yields 

(Ax0') = hx0 + ( ~ . A o ) * . ~ . ( s  - s') + (~.Ao)% ~ . S X .  (85) 

The second term on the right-hand side of (85) is the bias caused by incorrect path- 
anomaly corrections. The third term is introduced because, in the calculation of 
A~o', the data for each event in the cluster are not equally weighted; rather, A~0' is 
shifted toward the locations of events with more and/or better data. subtracting 
h2o" corrects for this latter type of bias, which can be seen by taking its expected 
value 

( ~ o "  ) = ( ~ . A o ) ~ . ~ . ~ X .  (86) 

Therefore, the only bias in Aa~o is that  ascribable to uncorrected path anomalies. We 
shall henceforth assume that  the elements of the difference vector s - g vary 
randomly enough as functions of distance and azimuth so that  this bias is small 
enough to be ignored. Of course, the existence of uncorrected path anomalies will 
introduce scatter into the arrival-time residuals that  cannot be fit by moving the 
hypocentroid; this scatter is treated as random noise, just as in the case of single- 
event locations. In other words, s - ~ is considered to be a sample of a random 
process with zero mean, and the variance this process induces in the arrival times is 
incorporated into ~ .  

The variance matrix for the hypocentroid, 

VH---- ((A~o -- AXo)(A~o -- AXo) T) (87) 

can be formulated by noting that  the covariance between h~o' and h~o" is zero 

((AXo'-- (AXo'))(AXo " -  (AXo")) T) 

= v 2 ( ~ . A o )  *. ~E -  ~ £ - ( ~ - a o )  *T = 0. (88) 
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Thus, the variance matrix has the decomposition 

V.  = VH'+ VH" (89) 

where the two terms on the right-hand side are the variance matrices of A2o' and 
~:~o", respectively. These can be reduced to the following expressions 

VH" = v2VH ' = r2(Ao r" W2"Ao) -1 (90) 

VH" = (~-A0)L ~ • ~c .  ~ T. ( ~ . A o )  fT. (91) 

Consider now the statistics of the error process obtained by substituting the 
estimate (82) into equation (64) 

~ = ~ . ~ -  ~ . s -  ~.Ao.a~o' 

- [ 2 ~ . A 0 . a ~ 0 "  - ~ B . ~ . S X ] .  (92) 

Using equations (72) and (84) it is possible to show that  the term in square brackets 
is identically equal to zero (the proof is omitted to conserve space). Taking the first 
and second moments of {92), we find 

( EH } = 0 (93) 

(EHE, H T) = V2[~f -- ~ . A o .  (Ao T. W 2 " A o )  -1.Ao T" ~ T ]  (94) 

(IEH[ 2) = t r  (J~HJEH T) = v~(Q - M ) .  (95) 

For this problem the normalized sample variance is, therefore, 

~H 2 = IE, H ° 12/(Q - M ) .  (96) 

Generally, ~ will exceed ~c 2, because the former includes the dispersion caused by 
uncorrected path anomalies, whereas the latter is insensitive to such anomalies. 

Confidence ellipsoids for either hXo' or hXo" can be constructed in the usual 
manner. For example, the random variable 

(ku ' )  2 = (hX0'  -- A x o ' )  T ( ~ H , ) - I  ( h 2 0 '  - -  AX0') (97) 

has an expected value v2M and a critical value proportional to ~u 2 

(~H'L 2 = M~H2F, [M,  Q - M] .  (98) 

An analogous variable ( k H " ) 2  can be defined in terms of the scaled variance matrix 
VH", obtained by substituting ~c for ~c in equation (91); its expected value is also 
v2M, but its critical value is proportional to ~c 2 

(K'H")a 2 = M ~ c e F , [ M ,  N T  - -  Q - ( P  - 1)M]. (99) 

Using the additive properties of X ~ distributions an expression for the confidence 
ellipsoid of the hypocentroid estimate itself--the difference between h2o' and A2o"-- 
can be derived; the 100(1 - a) per cent confidence ellipsoid for the hypocentroid 
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comprises all vectors Ax that satisfy the inequality 

(Ax -- A2oO)T.[~H2fZH'+ ~C2(7H"] -1. (AX -- A£0 °) ______ MF,[M, N T -  MT]. (loo) 

It is clear from this expression and from equation (89) that the bias-corrected 
estimate A£o will always have a larger uncertainty than A£o'; the bias in the latter 
can be reduced only by increasing its variance. 

To compute A£0' and A£0" directly from equations (83) and (84) requires the 
calculation of the generalized inverse of ~.Ao, an NT X M matrix. However, the 
dimension of this system can be reduced by rewriting these equations using the 
expression (~.Ao)  t = (Ao T. W2.Ao) -1. Ao T. ~T; for example, 

A ~  o' = (Ao T. W2.Ao)-I.Ao . ( ~ T . A T  -- W 2 . ~  

= (Ao T. W2.Ao)-I .Ao • W . [ W  -1. ~ T . A ' ~  - W . $ ]  

= ( W . A o ) t . [ W - ' . ~ r . A ~  - W . ~ ]  (101) 

The computation of Aa~o' thus requires only the SVD of the Q × M matrix W.Ao 

+40 ~F~ +20 +I 
÷l % ~  +2 

-zo A B -4o C 

~o o ~o -T-- ; +~o -~o -~o ; - + *20 +40 

Fro. 5 Cluster vectors for earthquakes in Regions A, B, and C calculated from equat]on (72), elhpses 
dehneate 95 per cent confidence regions for individual epicenters. North is up, umts are kilometers, and 
event numbers refer to Table 1 

and the multiplication of its generalized inverse into the station-averaged, bias- 
corrected residual vector enclosed by the square brackets. Moreover, the diagonal 
elements of the Q x Q projection operator 

Pwno = W.Ao.  (W.Ao) t (102) 

are the data importances--or, here, perhaps more aptly termed "station impor- 
tances"--for this problem. 

Apphcatmn to Regions A, B, and C. The location procedures based on hypocen- 
troidal decomposition have been applied to the earthquakes of Table 1. The cluster 
vectors derived from equation (72) are displayed in Figure 5, where again the 
hypocentral depths have been fixed at 10 km. 

Deserving attention are several comparisons of these results with those of the 
single-event procedure. First, in the two methods the information regarding relative 
locations, as indicated by the data importances, is distributed differently across the 
data sets. Whereas stations with only one arrival per cluster contribute to the 
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relative locations in the single-event calculation, such stations are assigned zero 
importance in the multiple-event method, because this information could be biased 
by uncorrected path anomalies. There is a corresponding increase in the importance 
of stations with more than one arrival; the cumulative importance of the 15 stations 
recording all four Region A events increases from 43 per cent of the total to 63 per 
cent, for example. 

Second, the sizes of the confidence ellipsoids for individual epicenters are sub- 
stantially reduced by joint location. The reduction of errors in relative location is 
attributable, of course, to the removal of path-correlated errors from the arrival- 
time data; the values of the normalized standard deviations given by equation (81) 
are ~c = 0.58, 0.28, and 0.39 for Regions A, B, and C, respectively, a factor of 2 or so 
smaller than the normalized standard deviations typical of single-event locations 
(Table 1). The average magnitude in each cluster (1fib = 4.9, 5.1, and 5.0, respectively) 
correlates inversely with ~c, which is consistent with the hypothesis that these 
smaller standard deviations are dominated by reading errors and, hence, reflect the 
average signal-to-noise ratio. Indeed, on the seismograms examined by the authors, 
arrivals from the smaller Region A events are generally more difficult to pick than 
those from the larger events in Region B. 

Finally, a comparison of Figure 5 with Figure 4 shows that the multiple-event 
calculation reduces the overall scatter of Region C epicenters, but not that of Region 
A or B; in fact, Region B epicenters are somewhat more dispersed when jointly 
determined. The rms lengths of the cluster vectors in Regions A, B, and C are 8.9, 
5.9, and 12.0 km, respectively. The marginal distributions for individual events 
within each cluster yield confidence ellipsoids that  are generally smaller than these 
rms distances, suggesting the scatter is not entirely caused by reading errors. 
However, a formal test of this hypothesis cannot be based on the marginal distri- 
butions alone; it must also account for the event-to-event error cross-correlations 
implied by the other off-diagonal elements of ~c. 

Let the subscript S denote the purely spatial parts of the cluster vector and its 
error matrix, and consider the null hypothesis that the epicenters in each region are 
confined to a single spatial point; i.e., the hypothesis that $ X s  = O. If ( k ° s )  2 - 

8 X s  ° T  • ~ c s  t • 8 X s  ° exceeds some critical value (~cs)~ e, then this null hypothesis can 
be rejected at the 100(1 - a) per cent confidence level. Calculations involving the 
appropriate marginal distributions yield the following table 

Region (k°s) 2 (~cs)~2 
a = 0.05 a = 0.01 

A 4.8 4.5 6.2 
B 1.0 0.8 1.2 
C 10.6 3.3 4.2. 

In all three cases, the hypothesis that the epicenters are identical can be rejected at 
the 95 per cent confidence level, but only for Region C does the hypothesis fail at 
the 99 per cent level. 

Since the arrival-time data resolve the finite sizes of the source regions at a 
reasonable confidence level, some of the features of the distributions in Figure 5 
may have tectonic significance. In particular, there are alignments of epicenters in 
both Regions A and C along NW-trending axes. The Region-A alignment is nearly 
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parallel to small-scale faults identified within the epicentral  zone during a 1979 
oceanographic survey (Sverdrup and Jordan,  1979). These  faults, which were pre- 
sumably generated at or near  the spreading center,  are perhaps  being react ivated by 
intraplate stresses. 

"Weighted"  est imates of the epicentroids calculated from equation (83) are listed 
in Table  4 and are compared with the single-event locations in Figure 6. As pointed 
out  in the theoret ical  discussion, this formula provides the minimum-variance 
est imate of Ax0, but  its value is biased toward the larger, be t ter - recorded events. In 
the three cases considered here, however, the bias-correction te rm given by (84) is 
not  significantly different f rom zero at the 95 per cent confidence level, so, to avoid 
increasing their  variances, this correct ion has not  been made to any of the epicen- 
troid estimates. 

TABLE 4 
WEIGHTED EPICENTROIDS CALCULATED FROM EQUATION (83)* 

Lat i tude  s d Longi tude  s d 
Region 

(°N) ( ° )  (°E) (°) 

A -7.40 0.023 -148.21 0.026 
B -18.40 0 018 -132 87 0 018 
C -20.79 0 015 -I26 95 0 019 

* Depths fixed at ]0 km 
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FIG 6. Weighted epmentrolds for Regions A, B, and C and their 95 per cent confidence ellipsoids 
Open circles are single-event locations numbered accorchng to Table 1 

DISCUSSION 

The  epicentroid locations of Table  4 thus const i tute our best  est imates of where 
to look for ba thymet r ic  expressions of the seismicity (e.g., faulting or disruption of 
sediments) or for o ther  features associated with seismic activity (e.g., active sea- 
mounts).  The  95 per cent confidence ellipsoids for the epicentroids have character-  
istic dimensions on the order  of 10 km (Figure 6), whereas the clusters themselves 
appear  to be confined to areas with characterist ic horizontal  dimensions not  more 
than  about  twice this value (Figure 5). If  the bias due to uncorrec ted  pa th  anomalies 
is this small or smaller, as we suspect, then  detailed ba thymetr ic  and seismic surveys 
of Regions A, B, and C using s tandard marine geophysical techniques are feasible, 
requiring the expendi ture  of only several days of ship t ime at  each site. A prel iminary 
survey of Region A has already been accomplished (Sverdrup and Jordan,  1979), 
and the in terpreta t ion of the oceanographic data  in conjunct ion with the ear thquake  
location results obtained here  will be the subject  of a separate publication. 

The  theoret ical  techniques developed in this paper  should have wide application 
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to other teleseismic location problems. Although the method of hypocentroidal 
decomposition appears to be new, the basic idea behind the method--the use of 
projection operators to separate a linear system of equations into two or more 
smaller systems--has been employed previously in seismological inverse problems. 
In particular, three groups of investigators (Pavlis and Booker, 1980; Rodi et  al. ,  
1980; Spencer and Gubbins, 1980; see also Gubbins, 1980) have developed and 
applied, independently of one another, the projection technique and its generaliza- 
tions to the joint determination of hypocenters and velocity structure in regmns of 
lateral velocity variations. As in the case of hypocentroldal decomposition, these 
techniques lead to algorithms requiring much less work than previous formulations. 
The use of projection operators in setting up "hierarchies" of inverse problems has 
been discussed in the context of earth-structure determination by Jordan (1980), 
whc describes a general class of results he calls "averaging theorems". The hypo- 
centroidal decomposition theorem is a member of this class. 
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