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Abstract

In this paper we present deterministic algorithms of time O(nlogn) and space O(n) for
two robust scale estimators with maximal breakdown point. The actual source codes are
included, and execution times are compared.

1. INTRODUCTION

In robust estimation one frequently needs an initial or auxiliary estimator of scale. For this
one usually takes the median absolute deviation MAD, = 1.4826 med;{|z; — med; z,|}
because it has a simple explicit formula, needs little computation time, and is very robust
as witnessed by its bounded influence function and its 50% breakdown point. However,
there is still room for improvement in two areas: the fact that MAD,, is aimed at sym-
metric distributions, and its low (37%) gaussian efficiency. Rousseeuw and Croux (1991)
proposed two explicit and 50% breakdown scale estimators that are more efficient. These
are the estimator S, = 1.1926 med;{med, |z; — z;|} and the estimator @,, which is given
by the 0.25-quantile of the distances {|z; — x;|;7 < j}. Note that S, and @, do not
need any location estimate. The gaussian asymptotic efficiency of S,, is 58%, whereas .,
attains 82%. Other statistical properties such as finite-sample efficiencies and influence
functions turned out to be satisfactory as well, even at very asymmetric distributions.

At first sight these estimators appear to need O(n*) computation time, which would
be a disadvantage. However, both S, and (), can actually be computed using no more
than O(nlogn) time and O(n) storage, by means of the fast algorithms described below.
We also give correction factors that make our estimators (and the MAD) nearly unbiased
at small samples. The Fortran source code of both algorithms is listed in this paper, and
can be obtained in machine-readable form from the authors (email: croux@wins.uia.ac.be
and rousse@wins.uia.ac.be). A Pascal version is also available.

2. THE ESTIMATOR 5,
We define the estimator S,, as

S, = 1.1926 lomed himed |z; — x; (1)

=1,...,n j=1,...,
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where the outer operation is a low median (that is, the [(n+1)/2]-th order statistic out of
n numbers) and the inner is a high median (the ([n/2]4+1)-th order statistic out of n). This
should be read as follows: for each i we compute the high median of {|z;—xz;|; j = 1,..,n}.
This yields n numbers, the low median of which gives our final estimate S,,. (The factor
1.1926 is for consistency at normal distributions). The idea to apply medians repeatedly
was introduced by Tukey (1977) for estimation in two-way tables, and by Siegel (1982) for
estimating regression coefficients. Rousseeuw and Bassett (1990) used recursive medians
for estimating location in large data sets.

Note that (1) is an explicit formula, hence S, is always uniquely defined. We see
immediately that 5, does behave like a scale estimator, in the sense that transforming
the observations z; to az; + b will multiply S, by |a|. We will refer to this property as
affine equivariance.

Definition and breakdown point: It seems a bit superfluous to include the zero
values |z; — x;] in definition (1), but this is resolved by noting that

S, = 1.1926 1omedlor;1¢d |2; — 2] (2)
7 i#1

=1,...,n

This equivalent definition will be used in the actual computation of .5,,.

In order to measure the robustness of 5, we want to know how many data points need
to be replaced to make it explode (tend to infinity) or implode (tend to zero). For any
sample X = {z1,...,2,} the explosion breakdown point is defined by

e (S, X) = min{@; sup S,(X') = oo}
n’ x
and the implosion breakdown point by
£7 (S, X) = min{ 5 inf S,(X') = 0
(80 X) = min{ ™ if 5,(X) = 0],

where X’ is obtained by replacing any m observations by arbitrary values. The overall
breakdown point of S, is then defined as

€3S X) = min{er (S, X),eF (S0, X)),
For this particular estimator we obtain the following proposition:

Proposition 1. For any sample X = {z1,...,2,} the explosion breakdown point of S,
is given by

(S0 X) = [(n+1)/2]/n,
and for any sample X in which no 2 points coincide, the implosion breakdown point is
£7(50, X) = [n/2)/n.

Therefore its overall breakdown point is [n/2]/n, which is the best possible value. In fact,
if we replace the outer lomed in (2) by an order statistic of rank at most [n/2] + 1 we
still keep the same breakdown points. (Even more combinations, like himed(himed) or
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Table 1: Average value of S,,, MAD,, and @),, before the incorporation of a finite-sample
correction factor.

Sn MAD,, Qn

n ave SE ave SE ave SE
0.5381 0.0045 0.6689 0.0056 1.0025 0.0084
1.0479  0.0057 0.7336  0.0042 1.9523  0.0106
0.7485 0.0041 0.8291 0.0048 1.1973  0.0064
0.9996 0.0045 0.8331 0.0040 1.6276  0.0068
0.8335 0.0036 0.8774 0.0042 1.1638  0.0048
0.9951 0.0038 0.8855  0.0036 1.4942  0.0051
0.8812 0.0031 0.9032 0.0037 1.1411  0.0039
10 0.9941 0.0033 0.9128 0.0033 1.3925 0.0041
11 0.9113 0.0029 0.9236 0.0035 1.1240 0.0034
20 0.9983 0.0022 0.9582 0.0025 1.1899  0.0023
21 0.9643 0.0020 0.9611 0.0025 1.0716  0.0021
30 1.0024 0.0017 0.9756 0.0021 1.1270 0.0017
31 0.9748 0.0017 0.9743 0.0021 1.0510 0.0016
50 1.0012 0.0013 0.9848 0.0016 1.0763 0.0013
51 0.9874 0.0013 0.9840 0.0016 1.0295 0.0012
80 1.0017 0.0010 0.9892 0.0013 1.0487 0.0009
81 0.9949 0.0010 0.9920 0.0013 1.0176  0.0009
100 0.9998  0.0009 0.9907 0.0012 1.0393  0.0008

O 00 ~1 O O = W

lomed(himed), are allowed if we are willing to accept an explosion breakdown point of
[n/2]/n combined with an implosion breakdown point of [(n + 1)/2]/n.) Here we don’t
adopt the usual definition of the sample median as an average of the low and high median
since this is only necessary in the location case (to obtain affine equivariance), and doubles
the computation time.

In order to check whether the factor 1.1926 (which was obtained by means of an
asymptotic argument) succeeds in making .5, approximately unbiased for finite samples,
we performed a simulation study. For each n we generated 10,000 samples of n gaussian
observations and then computed the average value of (2) and the standard error (SE) on
that value. To generate these observations we used a random generator provided by the
compiler on our Unix system and the Box-Muller transformation. The random generator
of Cheney and Kincaid (1985, page 335) and the generator AS 183 (Wichmann and Hill
1982, McLeod 1985) yielded results that were within standard error bounds of the reported
values. In Table 1 we can see that for n even there is practically no bias. However, for n
odd a small bias appears. Therefore, from now on we redefine S5, as

S, = ¢, 1.1926 lomedlo '#Cd |2; — 2] (3)

i=1,...,n j
where the correction factor ¢, is given by

n| 2 3 4 5 6 7 8 9
¢, | 0743 1.851 0954 1.351 0.993 1.198 1.005 1.131

413



for n <9, and for n > 9 is defined as

Cp =

for n odd
9

¢, = 1 for n even .

In order to be able to give ¢, with three decimals, we repeated the simulation for small n

with 200,000 replications. Moreover, the factor ¢, can actually be obtained analytically.
Indeed, for n = 2 it holds that

lomedlomed |2; — 2| = |21 — 24|
2 =]

=1,

and we know that

2
E|X) — X,| = V2E|X | = —= = 1.1284
NZd
hence ¢; = 1/(1.1284 % 1.1926) = 0.743.
Note that the factor ¢, is generally close to 1. By way of comparison, let us consider
the factor b,, that is needed to make

MAD,, = b, 1.4826 med |2; — med z| (4)
i ]

approximately unbiased, where "med” now stands for the usual (lomed+himed)/2 version
of the median. By repeating the above procedure we obtain

n| 2 3 4 5 6 7 8 9
b, | 1.196 1.495 1.363 1.206 1.200 1.140 1.129 1.107

and for n > 9 we find

_on
T n—0.8
Therefore, the finite-sample correction factor for S, is of roughly the same size as the one

needed for MAD,,.

A naive algorithm for S,: A primitive method for computing S, is given by the
following Fortran code:

do 10 i=1,n
do 20 j=1,n
20 al(j)=abs(x(1)-x(3))
10 a2(i)=himed(al,n)
s=cn*1.1926*1lomed(a2,n)

Apart from the array x of observations, this only uses two additional arrays of length n,
so the total storage we need is O(n). Selecting an order statistic among n elements can be
done in O(n) time (Knuth 1973, page 216) so this simple algorithm needs a computation
time of O(n?). This algorithm computes S, as the remedian with base n (see Rousseeuw
and Bassett 1990) of the collection of interpoint distances D = {|x; — 2|; 1 <14,j < n},
assuming that the elements of D are considered row by row.

If we use a matrix language, then the naive algorithm above becomes a “one-liner”.
For example, in ISP we can write
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s=cnx1.1926xmedian(trn(median(abs(x-trn(x)))),

where “median” computes the column-wise median of a matrix and “trn” denotes the
transpose of a matrix. However, on our PC this ran into space problems for n > 150
because a matrix of n? > 22500 elements has to be stored in memory.

The naive algorithm really needs a large parallel computer, on which the n inner
medians could all be computed simultaneously.

An efficient algorithm:  The basic idea of our O(nlogn)-time and O(n)-space algo-
rithm is the following. If we first sort the observations (this takes O(nlogn) time), then
each a2(i) is in fact the overall (low) median of two sorted arrays, namely

{zi—xiq,...,z;— a1} and {x — 2y 2, — 25} (5)

Finding the overall median of two sorted arrays, of which the largest contains n elements,
can be done in O(logn) time. Shamos (1976) has described how to do this for arrays of
equal length. We extended this idea to unequal lengths, and adapted it to our situation.
(Note that it would not do to actually compute the n — 1 differences in (5) and then
to apply some subroutine to them, since that would increase the computation time to
O(n?) again.) In the following paragraph we give an outline of the algorithm for finding
the median of two sorted arrays A and B, of which B is the largest. We use this for
computing a2(i) with

A=A{a;—z,j39=1,...;i—1}and B={a;4; — x5 j=1,...,n—1},

when 1 <@ <[(n+1)/2]. For [(n+1)/2] < i< n we interchange A and B. The numbers
a2(1) and a2(n) are trivially found.

Finding the overall median of 2 sorted arrays: Suppose that we have two sorted
arrays A and B. Denote diff=ng —n4 > 0 (where np denotes the number of elements of
the array B). In our imagination we extend the array A to an array Ao with np elements,
by filling up the remainder with [diff/2] times —oo and [(diff + 1)/2] times +oc. Then
we have the property that lomed(A U B) = lomed(Aq U B). (If we were searching for the
himed, we would have to plug in [(diff + 1)/2] times —oo and [diff /2] times +00.) We
initialize four variables leftA = 1 = leftB and right A = np = rightB. Our potential
outcomes correspond to

Candidates= {a;; left A < j < rightA} U {b;; leftB < j < rightB}.

The purpose is to refine Candidates until it has only 2 elements. Denote by A,, and
B, the elements that are still in the running. We adapt the limits of Candidates until
left A = right A (and leftB = rightB) by steps satisfying:

(a) na,, =ng,, = lengthn,

a)
(b) lomed(A,, U B,,) = lomed(A;,—1 U Bin_1)
(c) length,, = [(length,—1 + 1)/2]
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Property (c¢) ensures that we only need O(logn) steps. In the final step na,, = ng,, =1,
so that from (b) it follows that the smallest of the 2 elements in A,, U B,, is our outcome.
How do we adapt our bounds? In step m, we compute medA and medB as the lomeds
of A,, and B,,. If for example medA > medB then we know that all ¢; > medA are
too large to be the overall median, and all b; < medB are too small to be the overall
median. (The algorithm needs to be quite carefully designed to end up with the correct
ranks for even and odd array lengths.) We also use two numbers Amin and Amax, to
mark the position of A in Ag (note that Amin and Amax remain unchanged during the
refinement steps). If an index j is smaller than Amin or greater than Amax, we know
what the outcome of comparing a; with any element of B will be. Note that it is impossible
that all elements of A,, are —oco, because then we would have lomed(A,, U B,,) = —oc.
It could happen that all elements of A,, are +oo, and then the overall himed equals
max(B,,) = byightB- One could test in every loop whether left A >Amax in order to use
the latter property, but it turns out that this does not improve the speed.

Source code: The function Sn was written in Fortran77 and has been compiled with
version 3.31 of the Microsoft Fortran compiler and the UTX/32 Fortran 77 compiler run-
ning under UNIX. It has been thoroughly tested against the result of the naive algorithm.

cc
cc Efficient algorithm for the scale estimator:

cc

cc Sn = cn * 1.1926 * LOMED_{i} HIMED_{j} |x_i-x_jl
cc

cc Parameters of the function Sn :

cc X : real array containing the observations

cc n : number of observations (n>=2)

cc

cc The function Sn uses the procedures:

cc sort(x,n,y) : sorts an array x of length n, and stores the
cc result in an array y (of size at least n)
cc pull(a,n,k) : finds the k-th order statistic of an

cc array a of length n

cc

cc The function Sn also creates an auxiliary array a2

cc (of size at least n) in which it stores the values

cc LOMED_{j<>i} Ix_i-x_jl for i=1,...,n

cc

function Sn(x,n)

dimension x(n),y(1000),a2(1000)

integer rightA,rightB,tryA,tryB,diff,Amin,Amax,even,half
real medA, medB

call sort(x,n,y)

a2(1)=y(n/2+1)-y(1)

do 10 i=2,(n+1)/2
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nA=i-1
nB=n-1i
diff=nB-nA
leftA=1
leftB=1
rightA=nB
rightB=nB
Amin=diff/2+1
Amax=diff/2+nA
15 continue
if (leftA.lt.rightA) then
length=rightA-leftA+1
even=1-mod (length,2)
half=(length-1)/2
tryA=leftA+half
tryB=leftB+half
if (tryA.lt.Amin) then
rightB=tryB
leftA=tryA+even
else
if (tryA.gt.Amax) then
rightA=tryA
leftB=tryB+even
else
medA=y(1)-y(i-tryA+Amin-1)
medB=y (tryB+i)-y (i)
if (medA.ge.medB) then
rightA=tryA
leftB=tryB+even
else
rightB=tryB
leftA=tryA+even

endif
endif
endif
go to 15
endif

if (leftA.gt.Amax) then
a2(1)=y(leftB+i)-y (1)

else
medA=y(i)-y(i-leftA+Amin-1)
medB=y (1eftB+i)-y(i)
a2(i)=min(medA ,medB)

endif

10 continue
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do 20 i=(n+1)/2+1,n-1
nA=n-i
nB=i-1
diff=nB-nA
leftA=1
leftB=1
rightA=nB
rightB=nB
Amin=diff/2+1
Amax=diff/2+nA
25 continue
if (leftA.lt.rightA) then
length=rightA-leftA+1
even=1-mod (length,2)
half=(length-1)/2
tryA=leftA+half
tryB=leftB+half
if (tryA.lt.Amin) then
rightB=tryB
leftA=tryA+even
else
if (tryA.gt.Amax) then
rightA=tryA
leftB=tryB+even
else
medA=y (i+tryA-Amin+1)-y (1)
medB=y(1)-y(i-tryB)
if (medA.ge.medB) then
rightA=tryA
leftB=tryB+even
else
rightB=tryB
leftA=tryA+even

endif
endif
endif
go to 25
endif

if (leftA.gt.Amax) then
a2(1)=y(i)-y(i-leftB)

else
medA=y (i+leftA-Amin+1)-y (i)
medB=y(1)-y(i-leftB)
a2(i)=min(medA ,medB)

endif
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20 continue
a2(n)=y(n)-y((n+1)/2)
cn=1
if (n.le.9) then

if (n.eq.2) cn=0.743
if (n.eq.3) cn=1.851
if (n.eq.4) cn=0.954
if (n.eq.5) cn=1.351
if (n.eq.6) cn=0.993
if (n.eq.7) cn=1.198
if (n.eq.8) cn=1.005
if (n.eq.9) cn=1.131

else

if (mod(n,2).eq.1) cn=n/(n-0.9)
endif
Sn=cn*1.1926%pull(a2,n, (n+1)/2)
return
end

The first do-loop (do 10) computes the values of a2(i)=lomed;z, |z; — z;| for ¢ =
2,...,[(n+1)/2]. In do 20 the same is done for ¢ = [(n 4+ 1)/2] + 1,...,n — 1. The
similarity between these loops is striking, but there are some crucial distinctions due to
the interchange of A and B. It is possible to shorten the source code by combining both
cases in a single loop, making use of a few additional if-tests and some multiplications
by a dummy integer taking the values -1 and 1. However, we found that this resulted in
running times that were roughly 35% higher.

Remark: Note that this algorithm provides the complete array a2 without additional
computational effort. This is important because the a2(i) can be used to construct confi-
dence intervals around 5,,. They also allow us to compute different scale estimators. For
instance, we could compute an L-statistic on the [n/2] 4+ 1 smallest values of a2(i).

3. THE ESTIMATOR @,
Our second estimator is defined as
Qn =2.2219{|z; — 2|57 < j}w) (6)

where the factor 2.2219 is for consistency and k & (Z) /4. That is, we take the k-th order

statistic of the (Z) interpoint distances. Like S,, the estimator (), has a simple and
explicit formula and is affine equivariant.

If we would replace the k-th order statistic by a median we would recover the median
interpoint distance mentioned by Bickel and Lehmann (1979), the breakdown point of
which is lower (about 29%). The latter is similar to the location estimator of Hodges and
Lehmann (1963) which uses the averages (x; + x;)/2 instead of the distances |2; — x;|.

Let us investigate which values of & in (6) yield the maximal breakdown point:
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Proposition 2. At any sample X in which no 2 points coincide we have

EH@QuX) = [(n+1)/2/n and = (Qu, X) = [n/2)/n

(2 erer= )

This means that there are h — 1 possible choices for k, which all yield the same break-
down behavior. Extensive simulations have confirmed that the standardized variances

nvar(Qn)/(ave(Qn)>2

are strictly decreasing in k, so the larger k£ yield the more efficient estimators. Therefore,

if we take

where h = [n/2] + 1.

we decided to use the largest value k = (g) For this choice of k, we have to determine the
appropriate correction factor. As in the case of 5, and MAD,,, we computed the average
of (6) over 10,000 samples. The results are given in Table 1, and again we see that this
behavior is slightly different for n odd or even. We therefore redefine (), as

Qn =d,2.2219{|z; — 24|51 < ]}(g) (7)

where the correction factor d,, is given by

n| 2 3 4 5 6 7 8 9
d, ]0.399 0.994 0.512 0.844 0.611 0.857 0.669 0.872

for n <9, and for n > 9 is defined as

d, = for n odd
n+14

d, = " for n even.
n—+ 3.8

Note that dy has been obtained analytically, as were ¢; and by. In fact, for n = 2 all
affine equivariant scale estimators (including S,, MAD,,, and @,) reduce to a multiple
of |z1 — |-

Computation of Qy: At first sight the estimator @), requires a large computational
complexity, because the naive algorithm (which begins by computing and storing all
(Z) pairwise distances) needs O(n?) space and O(n?) time. Fortunately, Johnson and
Mizoguchi (1978) provide a fast method for finding the k-th order statistic in a table of
the type X +Y = {a; +y;;1 <i,5 < n}. They first sort X and Y (using O(nlogn) time
for each) and then construct the n x n matrix U = X + Y in their imagination. They
define two arrays left and right for keeping track of the points on the i-th row that are
still in the running for being the k-th order statistic. In other words,

Candidates = {U;;; left(1) < j < right(i)}.
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Figure 1: The matrix U = (2 — Z(n—jt1))1<ij<n

By comparison with a certain trial value, one can make left(i) greater and right(i)
smaller. Each refinement step takes O(n) time, and there are O(logn) such steps. For
the trial value, Johnson and Mizoguchi chose the weighted median of the medians of the
rows in Candidates (with weight equal to their length). Since the computation of that
weighted median takes a substantial fraction of the total time, Monahan (1984) proposed
to use other trial values. This yields algorithms that are faster on average, but whose
worst case time becomes larger than O(nlogn).
For the computation of (), we note that

{lzi =il <Jhay =26 = Ce-jai LS 67 S 0hpny(ny)

where z(1) < ... < 2(,) are the ordered observations. Thus if we take X = {x(l), ey x(n)}
and Y = {—2(,),...,—2()} then we can apply the Johnson-Mizoguchi approach to the
table U = X +Y = (2(;) — Z(s—j41))1<i,j<n Which is shown in Figure 1. We see that the
elements in the upper triangle are negative or zero, so we initialize the arrays left and
right by
left(i) = n — i+ 2 and right(i) =n

for all 2 > 2.

Remark. By definition, at most k£ = (g) elements in the lower triangle can be smaller
than the value we are looking for. Hence certain elements in the bottom right corner of

U can be excluded beforehand, because each of them dominates more than k elements.
Therefore, we could initialize right by

right(i) =n— (i —h)

for all © > h. But although this modification reduced the initial size of Candidates by
roughly 25% it did not shorten the total computation time in a substantial way, so it is
not included in the present version of the algorithm.

Source code: The function Qn implements the above algorithm. It needs a function
called whimed for computing a weighted high median in O(n) time. Both functions
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are provided here. Note that Qn could also be used to compute an order statistic for a
different k, by changing one line in the source code. As in the function Sn we did not
need double precision, because the only arithmetic operation on reals is the subtraction
Ty — Tj.

cc
cc Time-efficient algorithm for the scale estimator:
cc

cc Qn = dn * 2.2219 * {|x_i-x_jl; i<j}_(k)

cc

cc Parameters of the function Qn :

cc X : real array containing the observations

cc n : number of observations (n >=2)

cc

cc The function Qn uses the procedures:

cc whimed(a,iw,n): finds the weighted high median of an array
cc a of length n, using the array iw (also of
cc length n) with positive integer weights.
cc sort(x,n,y) : sorts an array x of length n, and stores the
cc result in an array y (of size at least n)

cc pull(a,n,k) : finds the k-th order statistic of an

cc array a of length n

cc

function Qun(x,n)
dimension x(n)
dimension y(500) ,work(500)
integer left(500),right(500),weight (500),Q(500),P(500)
integer h,k,knew, jhelp,nL,nR,sumQ, sumP
logical found
h=n/2+1
k=hx(h-1)/2
call sort(x,n,y)
do 20 i=1,n
left(i)=n-i+2
right(i)=n
20 continue
jhelp=n*(n+1)/2
knew=k+jhelp
nL=jhelp
nR=n%*n
found=.false.
200 continue
if ( (nR-nL.gt.n).and.(.not.found) ) then
j=1
do 30 i=2,n
if (left(i).le.right(i)) then
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weight (j)=right(i)-left(i)+1
jhelp=left (i)+weight(j)/2
work(j)=y(i)-y(n+1-jhelp)

30

45

40

55

50

60

70

80

endi
cont

j=3+
f
inue

1

trial=whimed(work,weight,j-1)

j=0

do 40 i=n,1,-1

cont

if ((j.1t.n).and.((y(i)-y(n-j)).1lt.trial)) then

inue

Jj=i+1
goto 45
endif
P(i)=j
continue
j=n+1
do 50 i=1,n
continue

cont
sumP
sumQ

if ((y(1)-y(n-j+2)).gt.trial) then

endi
Qi)
inue
=0
=0

j=3-1
goto 55
f

=]

do 60 i=1,n

cont

sumP
sumQ
inue

=sumP+P (1)
=sumQ+Q(i)-1

if (knew.le.sumP) then

else

do 7

cont
nR=s

0 i=1,n
right(i)=P(i)
inue

umP

if (knew.gt.sumQ) then

else

do 80 i=1,n

left(i)=Q(i)
continue
nL=sumQ

Qn=trial
found=.true.
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100

90

cC
cC
cC
cC
cC
cC
cC
cC
cC
cC
cC

endif
endif
goto 200
endif
if (.not.found) then
j=1
do 90 i=2,n
if (left(i).le.right(i)) then
do 100 jj=left(i),right(d)
work(j)=y(i)-y(n-jj+1)
j=j+1
continue
endif
continue
Qn=pull (work,j-1,knew-nL)
endif
if (n.le.9) then
if (n.eq.2) dn=0.399
if (n.eq.3) dn=0.994
if (n.eq.4) dn=0.512
if (n.eq.5) dn=0.844
if (n.eq.6) dn=0.611
if (n.eq.7) dn=0.857
if (n.eq.8) dn=0.669
if (n.eq.9) dn=0.872
else
if (mod(n,2).eq.1) dn=n/(n+1.4)
if (mod(n,2).eq.0) dn=n/(n+3.8)
endif
Qn=dn*2.2219*Qn
return
end

Algorithm to compute the weighted high median in 0(n) time.

The whimed is defined as the smallest a(j) such that the sum
of the weights of all a(i) <= a(j) is strictly greater than
half of the total weight.

Parameters of this function:
a: real array containing the observations
n: number of observations
iw: array of integer weights of the observatioms.
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cc
cc This function uses the function pull.
cc
cc The size of acand, iwcand must be at least n.
cc
function whimed(a,iw,n)
dimension a(n),iw(n)
dimension acand(500),iwcand(500)
integer wtotal,wrest,wleft,wmid,wright
nn=n
wtotal=0
do 20 i=1,nn
wtotal=wtotal+iw(i)
20 continue
wrest=0
100 continue
trial=pull(a,nn,nn/2+1)
wleft=0
wmid=0
wright=0
do 30 i=1,nn
if (a(i).lt.trial) then
wleft=wleft+iw(i)
else
if (a(i).gt.trial) then
wright=wright+iw(i)
else
wnid=wmid+iw (i)
endif
endif
30 continue
if ((2*wrest+2*wleft).gt.wtotal) then
kcand=0
do 40 i=1,nn
if (a(i).lt.trial) then
kcand=kcand+1
acand(kcand)=a(i)
iwcand (kcand)=iw(i)
endif
40 continue
nn=kcand
else
if ((2*wrest+2*wleft+2*wmid) .gt.wtotal) then
whimed=trial
return
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else
kcand=0

do 50 i=1,nn
if(a(i).gt.trial) then

kcand=kcand+1
acand(kcand)=a(i)

iwcand (kcand)=iw(i)

endif
50 continue
nn=kcand

wrest=wrest+wleft+wmid

endif

endif

do 60 i=1,nn
a(i)=acand(i)

iw(i)=iwcand (i)

60 continue
go to 100
end

4. COMPUTATION TIMES

We have seen that the naive algorithms for S, and @, require O(n?) time, whereas the
more efficient algorithms constructed in this paper have a time complexity of O(nlogn).

However, this does not yet give us the proportionality constants hidden by the O(.) nota-
tion, or tell us how large n has to be before these expressions provide a good approximation

to actual computation times.

Table 2 lists the CPU times (in seconds) for each of the four algorithms and for several
values of n. Each entry was computed as the average time over 100 or more runs. The

Table 2: Average computation time (in seconds) of the naive and efficient algorithms for

S, and (),
Sn Qn
n naive efficient naive efficient
10 0.011  0.009 0.008 0.013
20 0.024  0.017 0.016  0.026
40 0.077  0.034 0.042  0.056
60 0.153  0.050 0.085  0.088
80 0.260  0.068 0.137  0.122
100 0.394  0.086 0.210  0.158
200 1.502  0.185 0.795  0.342
300 3.340  0.284 1.900  0.559
400 5.930  0.390 3.240  0.900
500 9.130  0.500 4.760  1.000
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Figure 2: Computation time (in seconds) of the efficient algorithms versus nlogn

timings were carried out on a 386 PC with 33 MHz clock, running under DOS.

We see that the efficient algorithm for 5, is uniformly faster than the naive one. For
(), this is only true when n > 60. For n = 500, the efficient (), is already 5 times faster
than the naive (),, and the efficient S,, is 20 times faster than its naive counterpart.

Comparing both naive algorithms with each other, we find that time(S,) ~ n? ~
time(Q,,) with time(Q,)/time(S,) — 1/2. This ratio can be explained by noting that for
Q. we select one order statistic among n(n — 1)/2 elements. For S, we select n order
statistics, each among n — 1 elements, which needs roughly the same time as one order
statistic among n(n — 1) elements.

Figure 2 plots the computation time of the efficient algorithms versus nlogn for val-
ues of n beyond those in Table 2, ranging from 500 to 4000. We see that the relations
remain linear. This confirms that time(S,) ~ nlogn ~ time(Q,). In this case we obtain
time(Q,)/time(S,) ~ 2, which is the opposite from what we found for the naive algo-
rithms. When comparing the efficient algorithms of 5, and @), it should also be noted
that S, needs far less storage than @, (although it is O(n) in both cases), which is also
to the advantage of .5,,.

Acknowledgment: We wish to thank Carine Segers for helping with the Pascal
versions of these algorithms.
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