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THE COMPUTATION OF SEISMIC TRAVEL TIMES 
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ABSTRACT 

We have developed a method for estimating travel times as a function of 
epicentral range and hypocentral depth which is faster than ray tracing or direct 
evaluation of ray integrals yet more compact and general than the interpolation 
of traditional travel-time tables. In this method, delay or intercept time (tau) as a 
function of ray parameter and source depth is tabulated. We show that direct 
manipulation of delay time yields travel time as an explicit function of range 
eliminating the iteration required to determine the proper ray parameter in ray 
tracing or the evaluation of ray integrals. Travel-time versus range tables exhibit 
the same explicit dependence by virtue of having eliminated the common inde- 
pendent variable, ray parameter. However, delay-time branches are monotonic, 
single-valued, and have fixed ray parameter limits. In contrast, travel-time 
branches may be nonmonotonic and multi-valued and generally have range limits 
which vary with source depth. Thus, delay-time tables are simpler to generate 
and interpolate than are travel-time tables and so result in travel-time estimates 
which are both more reliable and more precise for a given table size. Further, by 
retaining the explicit ray parameter dependence and hence a more direct rela- 
tionship with the ray integrals, the delay-time method offers more flexibility in 
organizing suites of related phases and in tailoring the algorithm to meet specific 
computational requirements than does the travel-time table approach. Addition- 
ally, we show how the delay-time method can be extended to laterally inhomo- 
geneous media. 

INTRODUCTION 

A problem commonly encountered in wave propagation problems may be formu- 
lated as follows: given the positions of a source and a receiver point, and a model of 
the medium in which they are embedded, estimate the time required for a wave 
group to propagate from the former to the latter. For seismological purposes, the 
medium is the Earth, the source is generally an earthquake, an explosion or a 
rockburst, and the receiver is usually an accelerometer. In most seismic problems, 
several simplifying assumptions may be made. First, travel time may be defined as 
the time required for an infinite frequency wave front to propagate from the source 
point to the receiver point. That is, t h e  geometrical optics approximation is 
adequate. Second, as the Earth is spherically symmetric to zeroth order and the 
receivers are always positioned very near the free surface, the source-receiver 
geometry may conveniently be specified by a hypocentral depth (or radius) and an 
epicenter-receiver angular distance (or range). 

The best-known seismological application of travel times occurs in the problem 
of locating earthquakes using Geiger's method (Geiger, 1910). In Geiger's algorithm, 
the location is determined by successive nonlinear least-squares corrections to an 
assumed source position. Traditionally, travel time is computed either by ray tracing 
(or equivalently by direct evaluation of the range and travel-time integrals) (Lee 
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and Lahr, 1975) or by interpolating tables of travel time in both source depth and 
range (Engdahl and Gunst, 1966). The former technique is computationally unrea- 
sonable for all but the simplest Earth models. Not only are the rays (or range and 
travel-time integrals) expensive to evaluate, but they are functions of a third 
variable, ray parameter, which is related to ray take-off angle at the source. Thus, 
for each arrival of interest, one must trace the ray (or evaluate the range integral) 
a number of times in order to determine the proper take-off angle before the travel 
time may be evaluated. The latter (table) method generally requires a great deal of 
mass storage since travel time as a function of epicentral distance can be discontin- 
uous and multi-valued making interpolation awkward. This trouble is aggravated 
by the fact that the ranges delimiting travel-time branches (segments where travel 
time is a continuous, monotonic, single-valued function of range) vary with hypo- 
central depth. In practice, these difficulties serve to limit the flexibility of travel- 
time tables as each phase of each model may require special treatment. 

In this paper, we propose a new method of estimating travel times. Computational 
efficiency is gained by retaining a table-driven approach. However, ease of table 
generation is gained by saving neither travel time nor range, but the theoretically 
more desirable delay or intercept time (tau function) as a function of source depth 
and ray parameter. The simple behavior of the tau function is well known and has 
been exploited in inversion studies (Johnson and Gilbert, 1972; Bessonova et al., 
1976). Not only is each delay-time branch monotonic and single-valued (even when 
there is a caustic in the corresponding travel time), but also ray parameters 
delimiting each branch are simple, invariant functions of the model. Further, tau is 
simply related to the Earth model and the singular behavior of tau and its derivatives 
is known analytically. These facts have been used to derive "natural" schemes for 
interpolating delay time in both source depth and range resulting in sparse ray 
parameter and model depth sampling and so in relatively compact tables. 

RAY INTEGRALS 

Consider waves propagating in the half-space z =< 0, in which velocity, v(z), is a 
function of depth alone, v (z) may be taken to be either compressional velocity, a (z), 
or shear velocity, ~(z), depending upon the type of ray desired. For convenience, 
assume the ray of interest is propagating in the x - z plane and in the +x direction. 
Define medium slowness 

u( z )  = v-l(z); (1) 

horizontal ray slowness (or ray parameter) 

sin(i(z)) (2) 
P = v(z )  ' 

where i (z )  is the (acute) angle the direction of ray propagation makes with the 
vertical and vertical ray slowness 

q(p ,  z) = (u2(z) -p2)1/2. (3) 

It is well known that ray parameter is invariant along the ray path under these 
circumstances. The ray may propagate where p <= u ( z )  and will turn (change from 
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down- to up-going or vice-versa) when p = u(z) (vertical slowness is zero). No 
geometrical ray may propagate where p > u (z). Thus, both p and q (p, z) are always 
real and (taking the principal value of the square root) nonnegative. The ray 
slowness vector is then 

p(x, z) = p~ +_ qi (4) 

where + is taken for an up-going ray segment and - for a down-going segment, p(x, 
z) has magnitude u (z) and points in the direction of ray propagation. 

Travel time is given by 

~ u2(z) dz 
T ( p )  = q ( p ,  z)  ' (5) 

where ~ indicates the integral over the complete ray path. The contribution of every 
segment of the ray path must be taken as positive. The range integral is given by 

P dz 
X(p)  = "~ 

q(p, z)" ,,,.2 
(6) 

The delay-time function, r(p) ,  is related to T(X) by the Legendre transformation 
(Goldstein, 1964, section 7.1) 

r(p) = T(p) - pX(p)  (7) 

and 

dT 
P = ~  

dT 
x =  (8) 

In analogy with Hamilton's canonical equations, ray parameter corresponds to a 
generalized momentum. Thus, the invariance of ray parameter is simply a conse- 
quence of the fact that the differential equations are cyclic in (independent of) the 
horizontal coordinates (because medium velocity is a function of depth only). Delay 
time may also be written as a ray integral, 

r(p) = ~) q(p, z) dz. (9) 

THE EARTH FLATTENING TRANSFORMATION 

In seismic problems, it is often necessary to explicitly account for the nearly 
spherical nature of the Earth. It can be shown that for kinematic purposes, there 
is an exact conformal mapping between planar and spherical geometries (Gerver 
and Markushevich, 1966; Mfiller, 1971). Therefore, equations for the planar geom- 
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etry may be used without loss of generality. The transformation is 

x = r 0 A  

z=ro n[ o] 
v/ (z )  - rov.~(r), (10) 

r 

where A is angular distance on the sphere in radians, the subscripts s and f denote 
spherical and flat geometries, respectively, and r0 is some reference radius. If ro is 
chosen to be the radius of the Earth then - z  corresponds to depth below the free 
surface and x is identical to arc length on the sphere. Equation (10) maps the 
spherical coordinates (r, A, ~) onto the cylindrical polar coordinates (z, x, ~ ) .  The 
azimuthal angle, ~, is the same in both coordinate systems. 

The exact nature of the transformation may be demonstrated by reconsidering 
the tau integral. Rewriting equation (9), 

~ [  1 p~]l/2dz (11) 
"r(p[) = v~(z )  

and substituting equation (10) yields 

T(p[) -~ ~ ( 7 / s 2 ( r )  - -  p 2) 1/2 dr, (12) 

where 

F 
v., (r) = 

v.~(r) 

r sin(i,,.@)) 
P'~ - v,(r) - rop/. (13) 

Equation (12) yields delay time in the spherical coordinate system in terms of 
angular slowness, ~.~, and angular ray parameter, p.~, as defined by Bullen (1963, 
chapter 7). Note that  is(z) = i~(r) as the mapping is conformal. 

In spite of the exact nature of the transformation, one note of caution is desirable. 
As r ~ 0 near the center of a spherical model, z --~ -co in the corresponding flat 
model and the flat model velocity behaves exponentially, 

v/ (z )  ~ v~(O)e -z/r°. (14) 

While this behavior is not a problem in a mathematical sense, it can lead to 
numerical difficulties. The simplest solution is to choose a model interpolation in 
this region which gives sensible results for the spherical model and which allows 
analytical evaluation of equation (9) over a semi-infinite interval. 
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THE THETA FUNCTION 

Consider the function 

O(p, x) = T(p)  + px  (15) 

or substituting equation (7) 

O(p, x) = T ( p )  + p ( x  - X ( p ) ) .  (16) 

The theta function represents the arrival time of a wave front with horizontal 
slowness p at range x. This wave front arrives at range X ( p )  after time T ( p ) .  The 
time required to propagate the extra distance (x - X ( p ) )  with horizontal slowness 
p is p ( x  - X ( p ) ) .  This property of the theta function is the basis of the WKBJ 
synthetic seismogram theory (Chapman, 1978). Stationary points of the theta 
function correspond to geometrical wave group arrivals. 

O0(p, x) d-r(p) 

ap dp 
+ x = x - X ( p )  (17) 

SO 

O0(p, x) 
Op p0 = 0 (18)  

when 

x = X(po) .  (19) 

From equation (16), the value of the theta function at the stationary point is just 
the travel time 

T(po)  = O(po, X(po)) .  (20) 

The stationarity of the theta function at the geometrical arrivals is, of course, an 
expression of Fermat's principal. 

In other words, given ~(p) and a range x at which the travel times of a suite of 
phases is desired, it is sufficient to examine the stationary points of the correspond- 
ing theta function. Neither X ( p )  nor T ( p )  are required. Caustics simply result in 
multiple stationary points allowing all geometrical arrivals to be easily determined. 
From equation (18) we see that  the ray parameter corresponding to each arrival will 
be determined as a byproduct of the travel-time calculation. Due to stationarity, we 
expect that  travel-time estimates derived from equation (20) will be more accurate 
than the ray parameter estimates or indeed than the tau function itself (provided it 
is unbiased on the average). 

Additionally, the "travel times" of certain nongeometric diffracted signals may 
also be determined from the theta function. These include head waves and diffracted 
waves related to caustics and to shadows: 

(a) Head waves are caused by the branch cut in the reflection/transmission 
coefficient from an interface. If a ray interacts with an interface, any velocity at 
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the interface (a or/3 on either side of the interface) which is greater than the actual 
ray velocity (on either side of the interface) can result in a head wave. Call any such 
velocity vcrit and the corresponding horizontal slowness Petit. If X >= X(Pcrit), then 
(Chapman, 1978) 

Thead = O ( Pcrit , X) 

= T(Pcri t)  + Pcrit(X - X(pcr i t ) ) .  (21) 

Although Thead can also be computed when x < X(perit), it does not correspond to 
an arrival in this case. Note that in general, the head wave is accompanied by an 
interference head wave resulting from waves transmitted through the interface at 
near critical ray parameter and multiply reflected from the under side of the 
discontinuity. When the distance that the wave is diffracted along the interface is 
not too large, T~ad is a good approximation for the travel time of the interference 
head wave as well. 

(b) On the illuminated side of a caustic, two arrivals exist close together. These 
correspond to a maximum and minimum in the theta function. At the caustic, these 
stationary points coalesce and in the nonilluminated region, no geometrical arrival 
exists. However, the gradient of the theta function will still become very small, 
giving rise to a diffracted arrival (Chapman, 1978). The wave fronts a l m o s t  add up 
in a stationary fashion. This is an example of classical Airy diffraction. The travel 
time can be estimated from 

Tarry = O(po ,  x )  (22) 

where 

OO(p, x) ] 
Op I = minimum 

Po 

(23) 

or equivalently 

d X ( p )  = 0. (24) 
dp  po 

The condition for what constitutes a significant minimum is frequency dependent 
and is best answered by examining synthetic seismograms. An example of such a 
caustic is the point B in P K P .  

(c) The travel time of the diffracted arrival that exists in a shadow caused by an 
interface can also be predicted from the theta function. The shadow is caused by 
the wave front of a turning ray being cut off by the interface. The diffracted signal 
is partly due to this incomplete wave front (Fresnel diffraction) and partly due to 
interaction with the interface (an interface mode). The travel-time branch for the 
turning ray must have a minimum p value, Pen~ (and similarly the reflection from 
the interface has a maximum p value). The travel time of the diffracted signal is 

Tshad "= 0 (Pend, X ) 

= T(pe,~d) + pend(X -- X ( p e n d ) ) .  (25) 
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This only applies in the shadow (x >= X(pend)). Although Ts~d is defined in the 
illuminated zone as well, it does not correspond to an arrival. An example of such 
a shadow is Pdirrbeyond the P/PcP core shadow. 

Note that in all cases, the travel-time estimates for these diffracted signals are 
appropriate for very high-frequency waves. However, it is well known that real 
diffracted wave groups have a lower frequency content than refracted or reflected 
waves which have traveled a similar distance. The further the waves have diffracted 
along the interface in cases a and c and the further away from the caustic distance 
the waves arrive in case b, the lower the mean frequency content. As a result, the 
greater the diffraction, the more important the dispersion of the finite frequency 
wave group becomes. The reliability of the high-frequency travel-time estimates is 
correspondingly diminished. To study the frequency-dependent apparent travel 
times of these diffracted signals, it will be necessary to construct synthetic body- 
wave seismograms. A very convenient method is to use the WKBJ formalism of 
Chapman (1978) and Dey-Sarkar and Chapman (1978). Not only is this method 
computationally efficient, but the theta function used for travel-time estimation 
represents a major portion of the computational labor required by the algorithm. 
Although the WKBJ approximation is less accurate for diffracted waves than it is 
for refracted or reflected waves, it can still be quite useful. WKBJ seismograms are 
accurate for the head wave, the Airy caustic, and Fresnel diffraction, but do not 
include the interference head wave or interface modes. If more accurate synthetic 
seismograms are required, several other methods are available, although the com- 
putational labor increases dramatically. For a discussion of the relative merits of 
various techniques, see Burdick and Orcutt (1979) and Choy et al. (1980). 

TAU BRANCHES 

In order to understand how the wide variety of observed seismic phases may be 
modeled in the theta function, it is useful to examine how the multiplicity of tau 
branches arise. For purposes of illustration, we have used the PEMC model of 
Dziewonski et al. (1975) throughout. The PEMC angular slowness for compressional 
and shear waves as a function of radius are shown in Figure 1. Figure 2 shows all 
the tau branches for down-going compressional waves from a surface source which 
are turned once by either refraction or reflection. Beginning at the right-hand (high 
ray parameter) end, each tau branch increases monotonically as ray take-off angle 
(and so ray parameter) decreases. 

Each tau branch is associated with one layer in the model, where a layer is taken 
to be a region of continuous, nonzero slowness gradient. Thus, a layer may be 
delimited either by a first-order discontinuity is slowness or by a discontinuity or 
reversal in slowness gradient (e.g., the lip of a low velocity zone). The largest ray 
parameter associated with each branch corresponds to the largest take-off angle for 
which a ray can just penetrate into the relevant layer. If the top of the layer is due 
to a discontinuous velocity increase, the tau branch begins with a refracted (or 
"transmitted") segment where rays turn within the layer (solid lines in Figure 2). If 
the bottom of the layer is also due to a discontinuous velocity increase, the 
transmitted segment will be followed by a segment where the rays are totally 
internally reflected (dotted lines in Figure 2). That is, the ray parameter is sufficient 
to penetrate through the layer, but not through the lower interface. Finally, for 
even smaller take-off angles, the tau curve bifurcates. The partially reflected portion 
(dashed lines in Figure 2) we associate with the same tau branch. The partially 
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transmitted portion is the beginning of the tau branch associated with the next 
deeper layer. 

If the top of the layer is due to a discontinuous velocity decrease, then tau for the 
layer will be offset from the tau branch for the layer just above. That is, the ray 
which just grazes the discontinuity divides transmitted and partially reflected 
regions for the preceding tau branch (there is, of course, no totally reflected portion). 
This same ray is also the first to penetrate into the low velocity layer. As the ray 
traverses a finite path in the low velocity layer, a tau offset corresponding to the 
geometrical shadow results. Depending on the geometry of the low velocity layer, 
the resulting tau branch may not have a transmitted portion. That is, the first ray 
to penetrate into the layer may also penetrate right through the layer to be reflected 
from the lower boundary. 

PEMC 
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FIG. 1. Angular medium slowness as a function of (radial) depth for Earth model PEMC. The solid 

line is compressional slowness and the dashed line is shear slowness. Infinite shear slowness in the outer 
core has been suppressed. 

If a low velocity layer is delimited by a second-order discontinuity (i.e., slowness 
continuous, slowness gradient discontinuous), then the behavior is similar to that 
for a first-order discontinuity and a partial low-frequency reflection will still result. 
If a low velocity layer is delimited by reversals in slowness gradient with no 
discontinuity, then no reflections are possible. However, in this case, trapped waves 
develop as described in the next section. 

Many of these phenomena may be observed in Figure 2. From top to bottom, the 
tau branches correspond to the inner core, outer core, lower mantle, lower transition 
zone (420- to 670-km depth), upper transition zone (220- to 420-km depth), low 
velocity zone, high velocity lid, lower crust, and upper crust. The crustal branches 
are partially obscured by the abscissa. For more detail, see the expanded view in 
Figure 4. Low velocity zone behavior is best seen in the core shadow. Note that  the 
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core caustic is not visible in the tau diagram although it is quite clear in the range 
diagram (Figure 3). This is one of the greatest strengths of the tau approach. 

If the source point is placed at a depth below the free surface, the tau diagram is 
modified somewhat. Tau branches for the layer in which the source is embedded 
and for deeper layers are qualitatively the same as those in Figure 2. However, 
branches due to shallower layers are replaced by a single branch corresponding to 
up-going rays (if we neglect reflections from the under side of discontinuities). At 
the highest allowable ray parameter, the up-going branch joins the shallowest down- 
going branch. A minor complication arises when the source is placed in a low 
velocity zone. In this case, there will be a range of the highest allowable ray 
parameters for which both up- and down-going rays are trapped by the low velocity 
channel. In the high-frequency approximation employed here, these trapped waves 
are never observable. Neglecting them entirely leads to no algorithmic difficulties 

P - surface focus 
1 4 0 0 1  

1 2 0 0 ~  

I000]--~ 
~ 800 

600- ~ ,  

400- 

200- _ _ ~  

0 , =-- ~-- - -=:~-~ . . . . . . . .  i , , J 

0 200 400 600 800 1000 1200 

Ray parameter (km-s/km) 
FIG. 2. Compressional wave delay-time branches as a function of ray parameter for all rays which 

originate from a surface source are turned once in Ear th  model PEMC and arrive at a surface receiver. 
Solid lines denote rays turned by refraction. Dotted and dashed lines denote rays turned by reflection. 
Dotted lines correspond to total reflections and dashed lines to partial reflections. 

in estimating the travel times of observable waves. Theoretically, such trapped 
waves may be observed due to finite frequency effects. However, we know of no 
observation of this phenomena. 

SINGULAR BEHAVIOR 

As we have seen, the travel times of whole suites of related body-wave arrivals 
may be estimated if T(p) is known for all relevant branches. From a theoretical 
point of view this is all that is needed. However, from a computational point of view 
many other issues must be addressed before a practical algorithm can be developed. 
For instance, it will be necessary to find methods of calculating tau at selected ray 
parameters. Further, since it will not be feasible to compute tau for all necessary 
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ray parameters, some method of estimating it between computed values will also be 
needed. In both cases, a careful study of singularities in the derivatives of tau is 
required to insure qualitative correctness for all desired source depths and epicentral 
ranges for the widest possible range of models. 

Both T(p) and X(p) have a singularity in their integrands [see equations (5) 
and (6), respectively] at any turning point. Provided that the zero in q2(p, z) is 
first-order [i.e., q2(p, z) = 0 but Oq2(p, z)/Oz # 0], the singularity is integrable. If 
the zero is higher order, then the singularity is not integrable and both the range 
and the travel time become infinite. For example, if the zero is second-order, then 
the range behaves logarithmically (Hron and Chapman, 1974). Keeping only the 

P - surface focus 
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FIG. 3. Compressional wave range as a function of ray parameter for the delay-time branches shown 

in Figure 2. The solid, dotted, and dashed lines correspond to refracted, totally reflected, and partially 
reflected rays, respectively. 

dominant term 

X ( p )  

u ln(p u) p > u 

F U 11/2 
- 2 , _ _ |  l n ( u - p )  p-<_u, (26) 

Lu- J 

where u and u" are evaluated at the stationary point and prime means differentiation 
with respect to the argument. From equation (3), it is clear that a second-order zero 
is q2(p, z) implies u'(z) = 0. This case would arise, for instance, in a model 
possessing a low velocity zone whose lid has a smooth lip. The qualitative behavior 
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of such a model is quite different than that of a similar model whose lid has a 
continuous slowness, but a discontinuous slowness gradient at the lip. In the latter 
case, range and travel time are bounded, turning rays exhibit a shadow zone, and a 
weak, low frequency reflection results from the discontinuity in slowness gradient. 
In the former case, there is neither a shadow zone nor a reflection. However, the 
waves arriving in place of the shadow zone must be quite weak as waves with a 
small range of ray parameter are spread over an infinite distance range [equation 
(26)]. In fact, neither model is realistic. Finite frequency wave groups traversing 
finite ray tubes respond to averaged model properties and result in seismograms in 
which differences between these models may not be observable given Earth noise. 
Lacking observational constraints and given the computational complexity of ac- 
commodating second and higher order zeroes in q2(p, z), we have chosen to restrict 
the class of acceptable Earth models to those for which reversals in model slowness 
gradient occur only at depths where u'(z) is discontinuous. In practice, it will be 
necessary to select discrete model depths and to perform the ray integrals over some 
interpolation of slowness. A proper selection of interpolation formulae will guarantee 
that the model used in travel-time computations will always satisfy the above 
criteria even if the conceptual model does not. 

This case aside, T(p)  and X ( p )  [and so r (p) ]  are well behaved everywhere. 
However, the same cannot be said of the second derivative of tau (or equivalently 
the first derivative of range). To see this, we develop explicit formulas for X'{p) .  
For reflected rays 

u2 dz 
X ' (p )  = q3(p, z)" (27) 

For turning rays, however, equation (27) breaks down due to the integrable singu- 
larity in X ( p )  at the turning point. For illustrative purposes, assume that it is a 
down-going ray which is turned once. Rewrite equation (6) as 

j ~ z *  

X ( p )  = 2 --P dz p dz 
~p q(p, z) + ~z* q(p, z ) '  (28) 

where zp is the depth of the turning point, z* is a shallower depth in the neighborhood 
of zp, and ~z* is the complete ray integral excluding the depth interval Iz = (zp, z*). 

Let the interval Iz be sufficiently small that 

u(z )  
g ( z )  - (29) 

u ' ( z )  

is continuous and positive over L. The second integral in equation (28) is well 
behaved everywhere. For the first integral, we change the variable of integration to 
/t 

. ~u(z*) 
X(p) = 2 gp du p dz 

vp uq(p, u) + ~ z * -  (30) 
q(p, z) 
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and integrate by parts 

fl .F X ( p )  = 2 g  s e c  -1 u I~ (z*) - 2 g ' s e c  -1 d u  + ~z* - -  
[ p  vp 

p dz 

q(p,  z)"  
(31) 

Now, both the constant term and the first integrand of equation (31) are zero at 
the turning point. Finally, we may write (Wesson, 1970; Chapman, 1971) 

2g(z*) fuzz*) g, du ~ u2(z) dz 
X ' ( p )  = q(p,  z*) + 2 - -  + q3(p, z) up q(p,  u) z* • (32) 

Using equation (32), the behavior of X ' ( p )  may be investigated for each tau branch. 
For a reflected branch, the lower p limit is always p = 0. Since X ( p )  ~ 0 smoothly 

as p --~ 0, there should be no particular difficulty in interpolating the tau function 
in this region. At the upper p limit, X ' ( p )  is singular corresponding to the grazing 
reflection. Expanding the integral of X' (p) about this upper limit, we obtain 

(2u) 1/~ 
X ' ( p )  ,'~ - -  (u - p)-1/2 (33) ~t  

(excluding the nonsingular terms) where u and u' are evaluated just above the 
reflecting interface (the expression assumes that a down-going ray is reflected once 
from the interface). An example of this behavior is PcP at the core shadow. 

Again for a turning ray, the lowerp limit is not singular. Normally, it corresponds 
to a grazing ray (e.g., P at the core shadow). A special case occurs for the ray in a 
spherical model which passes through the center of the model. In this case, we have 
r = 0 (z = - ~ )  and for the limiting turning ray A = ~r(X = roar) despite the fact 
that  p = 0 (e.g., P K I K P ) .  Even at the center of the Earth though, X'(0) is well 
behaved. However, as for reflections, X' (p) will be singular at the upper p limit of 
each transmitted ray branch. Two cases may occur. For a ray turning below an 
interface at which the velocity increases, the upper limit is at the critical point 
where the turning ray is horizontal and traverses an infinitesimal path just below 
the interface. Taking z* just below the interface, we find 

2g (2u) 1/~ 
X ' ( p )  (u - p)- i /2 (34) q u I 

where u, u', g, and q are evaluated just below the interface. An example is point D 
of P K I K P .  A similar result applies for the turning rays in the surface layer (e.g, 
Pg). The second case occurs when a ray turns in a layer below an interface at which 
the velocity decreases. Now the turning ray has a significant portion in the lower 
layer, and the singularity occurs because of propagation through the higher velocity 
lid. The singular behavior is 

X ' ( p )  (2u)I/2 (u - p)-~/~ (351 
U ~ 

where u and u' are evaluated just above the interface. An example is point A of 
PKP.  
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Thus, at the upper limit of one segment (either refracted or reflected) of any tau 
branch, we always have an inverse square root singularity in X'(p)  

X'(p)  ~ a(u - p)-1/2  (36) 

where a can be positive or negative, and u is the upper p limit of the branch segment. 
Therefore, 

X ( p )  ~ X ( u )  - 2 a ( u  -p)1/2 
~- (p )  ~ ~r(U) + X ( u ) ( u  - p )  - 4 a ( u  - p )3 /2 .  (37) 

The predicted square root behavior is quite apparent in the range diagram. In 
Figure 3, range is shown for all down-going compressional wave branches from a 
surface source which are turned once by either refraction or reflection. The large 
ray parameter end of the reflected portion (dashed and dotted lines) of each branch 
exhibits the behavior predicted by equation (33) [a > 0 in equation (36)]. The large 
ray parameter end of the transmitted portion (solid lines) of each branch (save in 
the outer core) exhibits the behavior predicted by equation (34) [a < 0 in equation 
(36)]. The outer core transmitted branch (PKP) exhibits the behavior predicted by 
equation (35) [a > 0 in equation (36)]. The core shadow and PKP caustic are quite 
clear in this domain. Note that the low velocity zone (fourth branch up counting 
from the abscissa) exhibits the same shadow behavior, but has no transmitted 
segment. All rays which penetrate this low velocity layer are reflected from the 
bottom discontinuity. In practice, any scheme for interpolating r (p) must explicitly 
account for these singularities in X'(p)  in order to avoid excessive loss of precision 
and spurious triplications or caustics. 

DISCRETIZATION 

The very nature of digital computation requires the discretization of each function 
needed in this problem. Indeed, efficiency dictates that the theta function be actually 
calculated at as few discrete ray parameters as possible in order to minimize the 
number of ray parameter intervals which must be searched for extrema. On the 
other hand, theta must be sampled densely enough that interpolation over each 
interval is sufficiently accurate. Although not strictly necessary, it is convenient to 
employ the same strategy in representing the Earth model itself. In fact, choosing 
discretizations for ray parameter and for model depth are not necessarily independ- 
ent problems. It is convenient to sample the model at depths corresponding to 
slownesses which are identical to discrete ray parameters. Thus, a ray with one of 
the discrete ray parameters will always bottom at a model depth sample. 

In choosing the discretization, certain critical slownesses (and hence model depths 
and ray parameters) must be sampled exactly. In particular, the slowness just above 
and below each first-order discontinuity and any local slowness extrema must be 
sampled to insure that the model is properly represented. As we have seen, these 
critical points also delimit the transmitted and reflected segments of various tau 
branches as well, insuring that the resulting travel-time branches will have the 
proper ranges and will join smoothly onto one another. 

Once the critical points have been selected, our problem becomes how to sample 
both ray parameter and model depth simultaneously. Unfortunately, the criteria 
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that T(p) and u(z)  are both well sampled is not sufficient to ensure adequate 
reconstruction of T ( X )  from O(p, x). Figure 1 illustrates the difficulty. Most of the 
complexity in the model resides in the upper 700 km ( ~  of the radius). This 
portion of the model accounts for about ~ of the distance range for both compres- 
sional and shear waves, but nearly ~ of the slowness range. 

A practical strategy is to sample the ray parameter between critical points such 
that range, X(p) ,  is sampled at approximately equal intervals. The form of equation 
(37) suggests that a quadratic ray parameter spacing, 

pj = peng - j2 . 5p, j = 0 , 1 , 2 , - . . , k  (38) 

where Pend and Pk are critical points, should do a reasonable job. In practice, as 
sampling is determined only once per model, it is worthwhile to fine tune equation 
(38) by making 5p a slowly varying function of ray parameter. This avoids under- 
sampling crustal and upper mantle reflectors and oversampling mantle and core- 
transmitted segments. In the latter case, relatively small changes in 5p over a very 
long transmitted segment can save oversampling by nearly a factor of two. Unfor- 
tunately, making 6p nonconstant results in an implicit algorithm for sample deter- 
mination. In our implementation, for example, given the critical slownesses, a 
preliminary depth sampling is constructed. Then, between successive critical ray 
parameters, equation (38) is applied. For each tentative ray parameter sample, 
X ( p )  is evaluated using equation (6) and 5p is modified as needed. Although messy, 
this process is not particularly slow as high precision is not required in evaluating 
X ( p ) .  

This procedure must be modified in two cases. For crustal and upper mantle 
branches, ray parameter intervals can become so large that the interpolation of 
theta is not sufficiently accurate. This can be controlled by specifying a maximum 
ray parameter interval. Also, the criteria of equal range intervals breaks down in 
the neighborhood of a caustic. This case can be treated by detecting the caustic in 
advance and fixing 5p at a suitable value until the caustic is passed. Additionally, 
care must be taken in the core and lower mantle that the maximum interval between 
successive depth samples does not become too large. In examples we have tried, this 
condition has always been satisfied a priori. 

Once ray parameter and hence model slowness sampling have been determined, 
all that remains is to determine model depth sampling. Some care must be taken as 
each slowness sample may correspond to more than one depth sample due to low 
velocity zones. However, slowness is guaranteed to be a monotonic function of depth 
between successive critical slownesses. Given such a monotonic interval, an Aiken 
iteration (Isaacson and Keller, 1966, chapter 3) has been used to determine the 
depth corresponding to a given slowness sample. This iteration is required because 
Earth models are generally specified by velocity as a function of depth. 

INTERPOLATION OF THE MODEL 

For discrete calculations such as we are proposing, a complete model specification 
requires a knowledge of the base model (PEMC in our examples), the discretization, 
and the interpolation scheme. In our experience, the model interpolation is not 
critical. Therefore, we have usually used simple two-parameter interpolants for 
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which the ray integrals may be evaluated analytically. If we further restrict the 
class of interpolants to methods for which the flat model slowness is monotonic in 
each depth interval, singularities due to a smooth reversal in slowness gradient are 
avoided. 

For a fiat model, some well-known possibilities are plane homogeneous layers 

ATi j  = AZi Ui 2 ( U ,  2 - -  pj2)-1/2 

A X ~  = Azip  ~(u~ 2 -- p jZ)-~/z (39) 

and plane layers with constant velocity gradients 

ATi j  = ~ ln[ui+ 1 + (u~+~ - p j2)1/2 

/~Zi[_(Ui2--pj2) 1/2 (U~+l~p.12) 1/2 1 
AX~j = ~ uiPj Ui+lPj ' (40) 

where the layer is bounded by depths z, and zi+l with corresponding slownesses u, = 
u(z , )  >= u(zi+l)  = ui+~, Az~ = [ z i -  z/+~ ], and Avi  = ui - 1 -  UTll . AT, jand AXijare just 
the travel-time and range increments which result when a ray of parameter pj 
passes through the ith depth interval. The corresponding delay-time increment is 
given by Az~j = ATii - p j A X i i .  These definitions guarantee that the contribution of 
each depth interval is always nonnegative for both travel time and range whether 
slowness decreases or increases with increasing depth. Note that both formulations 
have the property that depth and slowness contributions are separable. One could 
take advantage of this property to modify a model without reevaluating any special 
functions by changing discrete depth samples, leaving the corresponding discrete 
slownesses unchanged. 

Neither of these formulations is particularly successful when interpolating planar 
models derived from spherical models via the Earth-flattening transformation. This 
is because slow velocity variations with radius in the spherical model transform into 
exponential variations with depth in the planar case. This is, of course, particularly 
noticeable near the center of the spherical model [equation (14)]. In these cases, it 
is better to use an interpolation which is sensible in the spherical geometry. An 
example is the Mohorovi~i6 or Bullen law v / r )  = A r  B which transforms to vr(z)  = 

aebZ[with a = Aro B and b = (B - 1)/ro]. This choice yields 

Az, 
A T  0 _ [(u'~ _ p 2)1/2 _ (u%i  - pj~)l/2] 

ln( ul ) 
\U~+i 

(41) 

Another example is linear interpolation of the angular slowness u , ( r )  = A r  + B 
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which t ransforms to us(z)  = A e  z/r° + b. This  choice yields 

- -  p 2 )1 /2  - -  ( U i 2  - -  pj2)1/2 ATi j  = ro (ui+12 J 

+ b ln[ ÷ L ui + (ui 2 - pj2)1/2 JJ 4- P J-- A X  0 

rop j 
AXI j  (b 2 p 2)1/2 - -  ] 

/ (Lti+l -- b)[(b 2 - pj2)l/2(tti  2 -- pj2)1/2 4- bui - p j2] ] 

• I (ui  b)[(b 2 _ ,~ 2~1/2(,,2 - -  P ' I I  ' ~ ' * i + 1 -  pj2)1/2 ..li - bUi+l P f f l I '  

where 

ui+l -_u± .] 
B = rob = ro ui (e ~zl/r° - 1)J" 

(42) 

Notice tha t  in this and more complicated cases, the depth and slowness contribu- 
t ions are no longer separable. 

The  Bullen law [equation (41)] can convenient ly be used in the interval containing 
the center  of a spherical model if velocity is constrained to be constant .  In this 
special case z~+~ = - ~  and ui+l = 0. Equat ion (41) becomes 

ATi j  = ro(ui" - pj2)1/2 

/ \1/2 
~.~Xij : r 0 c o s - l ( P J }  . 

\ u , /  
(43) 

Because a constant  velocity yields a linear angular slowness, equation (42) gives the 
same result in this interval. Because our discretization of both ray parameter  and 
slowness are the same, equation (43) will always be evaluated with p~ = Ui+l = 0 
yielding 

ATi,i+l = rdAi 

71- 

AXe,i+1 "~ ro -~ .  ( 4 4 )  

In other  words, the range integral for zero ray parameter  accumulates no distance 
except when passing through the center  of the spherical model. 

Several other  two-parameter  interpolants  for v(z)  which result in analytical 
expressions for the ray integrals are known. At least one three-parameter  formula 
with this proper ty  is also known (Azbel and Yanovskaya, 1972), but  we are not  
aware of any higher order methods. It is now well known tha t  an alternative is to 
interpolate z (u) .  This  technique has been widely used in the Soviet Union (e.g., 
Gurvi tch and Nomokonov,  1966) al though the first application in western l i terature 
appears to be Woodhouse (1974). Although reversals in slowness gradient and plane 
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constant  velocity layers must  be t reated as special cases, there are an infinite 
number  of interpolat ion formulas for which the ray integrals may be evaluated 
analytically. 

To see this, rewrite equations (5) and (6), changing the variable to slowness and 
the range to one slowness interval  

f2 ATij  = q (p j ,  u) du  d u  

L A X i j  = q (p j ,  u)  du  du  . 

Represent ing z (u)  as a polynomial  in u 

it can be shown tha t  

z(u)  = 2 a . u "  
n=O 

where 

= n = l  . -- In+~ ui+] [ 

'~Xu = n=12 n a , , p j  //._l~gj)- I,,~ 

f x Xn  

In(x) = (x 2 _ 1)1/2 dx  

can be evaluated recursively since 

with 

n I , ( x )  = (n  - 1)In-2 + (x 2 - 1)1/2x'-1 

Io(x)  = cosh-l(x)  

I i ( x )  = (x 2 - 1) 1/2 . 

For  spherical models, equation (46) is equivalent to 

ln(r) = ~ An~sn(r)  
n=O 

due to the Ear th-f la t tening t ransformat ion,  where 

~(Ao - In ro)ro 
an = Innron+l 

n = 0  
n > 0 "  

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 
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This formulation has been used by Jansky and Cerven:~ (1980) with even powers. 
Because of the logarithmic dependence on radius [equation (51)], this formulation 
is not suitable near the center of a spherical Earth model. An alternative is to 
include the exponential behavior required by the Earth-flattening transformation 
[equation (14)] in the expansion of z(u) 

z(u) = r01n u + Y, bnu n (53) 
n=O 

which is equivalent to 

ln(v) = ~n=O [ bro~+l] ~sn(r) (54) 

in the spherical model, as suggested by Woodhouse (personal communication, 1981). 
This formulation leads to 

I r°pj{ll[-~j] - 

-- I n + l [ ~  ]} I 

ro{c°s-I [~. ] - 

_ [ U i + l  

_°+Ji L PJ n=l nlJj ~ n+l[pj 

-t- n Uz Cos-l[ PJLui+ 1 ]} n~nbnpi= 1 {/n-l[~j ] 
(55) 

INTERPOLATION OF THETA 

In order to determine travel times from the extremal values of the theta function 
[equations (15) to (20)], it will be necessary to find zeros in the derivative of some 
interpolant of O(p, x) for each range, x, of interest. Clearly, it is inconvenient to 
interpolate theta for each new range. However, from equation (15), it is apparent 
that if we can find an interpolation for tau which has a linear term in ray parameter, 
then the same interpolation will serve for theta for any range. In fact, theta need 
never be explicitly constructed at all. 

For the extremal search to be efficient, it is desirable for the tau interpolant to 
be both easily differentiated and for zeros in the derivative to be simple to evaluate. 
Piecewise cubic spline interpolation satisfies all of these requirements: there is a 
linear term in ray parameter, the polynomial is easy to differentiate, and zeros in 
the derivative may be found by evaluating a quadratic equation. Further, two 
extrema per interval are possible permitting realistic modeling near a caustic. 
Unfortunately, both H splines (Hermite splines fit both the function and its first 
derivative exactly at each discrete point) and B splines (smooth splines fit the 
function exactly at each discrete point, the first derivative exactly at the first and 
last discrete points, and have continuous first and second derivatives everywhere) 
become unstable near the singular points in X'(p).  In both cases, the second 
derivative of the interpolant, becomes so large that numerical caustics sometimes 
develop. 
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Fortunately, an alternative which preserves all of the advantages of piecewise 
cubic spline interpolation and explicitly accounts for the singular behavior of X ' (p )  
can be constructed. First, divide each tau branch into segments such that the 
extremal ray parameters of each segment are either zero or singular points of X ' (p) .  
Each tau segment will then have exactly one square root singularity in its second 
derivative at its highest ray parameter. For each segment in turn, call this singular 
point p~,d. Then 7 splines, as we will call them, are defined by 

~(p )  = ai + bi(Pe~d - P )  + ci(Pend - -p)2  -t- di(p~d --p)3/2, Pi <---- P <= Pi+l. (56) 

The range (the derivative of tau) is given by 

X ( p )  = bi + 2ci(P~nd -- p )  + ~ di(Pend -- p)1/2 ; Pi <= P <= Pi+~ (57) 

and the first derivative of range is given by 

X ' ( p )  = -2c i  - ~ di(pe,~d -- p)-1/2., pi = < P = < Pi+l (58) 

which has a square root singularity at Penal as required. Further, theta will have an 
extremum when 

2ci(pend - p )  + ~ di(P~nd -- p)1/2 + (b~ - x)  = 0 (59) 

which is quadratic in (pe~d- p)1/2. 
As for piecewise cubic splines, piecewise T splines may be constructed in one of 

two different ways which are completely analogous to H splines and to B splines. 
The analog of H splines requires less computation to construct than does the B 
spline analog but nearly twice as much information must be saved [X(p) at all 
discrete points rather than at the end points of each tau segment]. In either case 
X ( p )  at the end points of each segment is fit exactly, guaranteeing that each travel- 
time branch will cover the proper distance range and will connect smoothly with its 
neighbors. Surprisingly, experimentation indicates that both methods have almost 
exactly the same precision in recovering T ( X ) .  However, the H spline analog breaks 
down in the neighborhood of a broad caustic, such as point B of P K P .  Because 
there are only weak constraints on the second derivative, which is small, several 
adjacent ray parameter intervals each yield a numerical caustic. 

Thus the B spline analog of the ~ splines is the interpolation method of choice. 
While its construction is more complicated than that for the H spline analog, the 
required computation is still not excessive. Our experience has been that proper 
interpolation is crucial to the success of this method. As the only completely 
successful method known has been invented here for this purpose, details of the 
algorithm are given in Appendix. As an aside, it is worth commenting on the 
comparable precision of these methods in estimating T ( X ) .  Because the H spline 
analog satisfies nearly twice as many constraints, one would expect that it is the 
more accurate interpolation formula. In fact, this is true for interpolating T (p). The 
apparently contradictory result for T ( X )  is due to the stationarity of the theta 
function at each geometrical arrival. Thus, errors in T ( p )  and X ( p )  are correlated 
in such a way that errors in T ( X )  are, to first order, independent of errors in ray 
parameter, p. Consequently, in choosing the B spline rather than the H spline 
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analog of r splines, we sacrifice precision in the ray parameter estimates and some 
computational efficiency for improved interpolation stability and a 50 per cent 
reduction in table size. 

In practice, one additional r spline stability problem must be addressed. We 
permit only one discretization of ray parameter per model, and it has been designed 
to adequately sample once refracted and once totally reflected portions of all down- 
going tau branches. Thus, up-going and partially reflected down-going branch 
segments, for instance, are often heavily and very nonuniformly sampled. Rapid 
fluctuations in ray parameter sample interval sometimes induce oscillations in the 
r spline interpolation. The same phenomenon is also exhibited by both H and B 
spline interpolations, although the amplitude of the oscillations is considerably 
smaller. Fortunately, this problem may be eliminated by decimating the ray param- 
eter sampling for affected branches. Simply insuring that range is not sampled too 
finely has been adequate in all cases we have encountered. 

Finally, notice that once the interpolation is performed, both r (p) and X(p) are 
known everywhere. This fact greatly reduces the computational effort required to 
find extrema of theta, since the range interval to which each ray parameter interval 
contributes is known in advance. With a little care, entire branches may be excluded 
from a given search with a single test. For contributing branches, ray parameter 
intervals with no arrivals may also be excluded so that the quadratic [equation (59)] 
need be solved only when desired solutions are known to exist. 

INTERPOLATION OF TAU WITH SOURCE DEPTH 

The tau tables are discretized in both ray parameter and model depth. The results 
for interpolating r(p) may be applied only if the desired source depth coincides 
with one of the discrete model depths. Although r (p) may be interpolated between 
two successive model depths, subtle inconsistencies between the specified Earth 
model and derived travel-time branches may arise. While these inconsistencies are 
negligible for most purposes, they may be avoided completely with only a modest 
increase in computational labor. 

The desired result is achieved by taking advantage of the simplicity of the 
analytical partial ray integral formulas presented above [e.g., equations (39) to 
(55)]. In other words, given the model interpolation employed in the initial construc- 
tion of the tau tables, r(p) at any desired source depth is derived by adding (or 
subtracting) partial ray integral contributions to (or from) r(p) at the nearest 
discrete model depth. In addition, it will be necessary to compute both tau and 
range for the ray parameter which bottoms at the desired source depth. This is an 
extremal point for both the up-going and the shallowest down-going tau branches. 
The total labor involved is slightly less than computing both range and delay time 
for a ray which passes straight through the flat model or through the center of a 
spherical model. For applications involving many travel-times estimates per source 
depth, the cost of this additional overhead is negligible. 

ORGANIZATION 

Because the theta-function technique depends on mathematics rather than on 
"brute-force" as in traditional travel-time tables, an unusual degree of flexibility is 
possible in tailoring the algorithm for a particular problem or computational 
environment. The organization of the tau tables governs the most important of 
these trade-offs. Several possibilities which we have examined in detail serve to 
illustrate this point. 
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Maximum versatility is gained by saving A~j in the table. Because no assumptions 
have been made about user requirements, the tau branch corresponding to any type 
of geometrical ray path can be constructed by performing the appropriate sums. If 
one is willing to restrict the class of model interpolants to those which are separable 
in depth and slowness [e.g., equations (39) to (41)], then the table might be reduced 
substantially. This is due to the fact that the slowness portion of the partial ray 
integrals can be identical for more than one depth interval if a velocity reversal has 
occurred. Note that one may take advantage of the separability in this way only if 
the model discretization is done by finding depths corresponding to discrete slow- 
nesses. As pointed out before, separability also offers the advantage that the model 
may be perturbed by modifying only the discrete depths which leaves the table 
containing the slowness contributions to ATij unchanged. In our experience, proper 
discretization of ray parameter is so model dependent that major alterations in a 
model may create difficulties in the interpolation of tau. 

Unfortunately, versatility is expensive. Saving A~i i in the table requires large 
table mass storage and, as the entire table is required to construct the tau branches, 
considerable input time and program address space are required as well. Further, 
the computational time and algorithmic complexity required to construct the tau 
branches is substantial. If one is willing to sacrifice the ability to perturb the model, 
an obvious solution is to save the partial ray integrals over larger segments of the 
ray paths. For example, if one saved the tau contribution due to each model layer 
then the table would be greatly reduced in size, but it would still be possible to 
construct the tau branch corresponding to any type of geometrical ray path from a 
surface source. In order to generalize this procedure to any source depth, it is also 
necessary to save the tau contribution due to a possible up-going branch (between 
the free surface and a discrete model depth) for all model depths shallower than the 
deepest source of interest. All possible up-going branches will usually comprise the 
bulk of the table, but at most one such branch is required by the algorithm for any 
given source depth. In extreme cases, the table itself may rival the/xTi~ table in size. 
However, program input time, address space, and computational time needed to 
construct tau branches of interest are all greatly reduced. 

If one is willing to restrict the class of desired ray paths, it is possible to do even 
better. For example, in earthquake location work, it is rare that branches other 
than up-going, once reflected or refracted down-going, and surface reflected down- 
going are required. By examining the relevant tau and range diagrams (Figures 2 to 
4), it is clear that for these branches tau is a multi-valued function of ray parameter 
only because of partial reflections (dashed lines). If all partial reflections are 
discarded, the storage required for all remaining down-going contributions may be 
collapsed into a single vector greatly simplifying algorithmic logic. The table in this 
case is comprised only of the two-way surface focus tau "branch" and the up-going 
contribution from each discrete depth of interest. One sum and one difference of 
surface focus tau and one up-going branch are sufficient to construct up-going, 
down-going, and surface reflected down-going branches. 

AN EXAMPLE 

The problem of generating travel times for teleseismic earthquake location 
provides an illustration of many of the capabilities of the tau-table method. For this 
example, we have used the third (least flexible-most efficient) organization dis- 
cussed. The spherical Earth model PEMC was used with the piecewise linear 
slowness interpolation. Equation (42) was used to evaluate all ray integrals. All 
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ranges in the interval (0, 180) degrees were allowed as well as source depths in the 
interval (0, 700) km. Requiring that range be sampled approximately every 200 km 
or less and that  the maximum ray parameter interval not greatly exceed 11 km-sec/ 
km resulted in 215 discrete ray parameter samples for the compressional velocity 
structure. The maximum sample interval in depth was less than 115 km and occurred 
in the deep outer core. 

A surface focus P-wave travel-time diagram (Figure 5) was constructed by 
sampling all branches at 10-km intervals in range. PdiH (the dotted line) was 
generated using equation (25) and was arbitrarily truncated at a range of 120 °. The 
multiplicity of branches at ranges less than 30 ° is due to the numerous upper mantle 
discontinuities in this model (Figure 1). The upper mantle low velocity zone produces 
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FIG. 4. Compressional delay time (upper panel) and range (lower panel) as functions of ray parameter 

for the crustal delay-time branches of Ear th  model PEMC. These branches have been reproduced on an 
expanded scale from Figure 2 and 3 where they were partially obscured by the abscissas. The solid, 
dotted, and dashed lines correspond to refracted, totally reflected, and partially reflected rays, respec- 
tively. 

a shadow which is masked by the reflection from the bottom of the layer. Figure 6 
illustrates the error in T(X) resulting from the r spline interpolation of ~(p), for 
all branches (excluding Pd¢i). In other words, the T(X) derived from the theta 
function extrema are compared with the results of direct integration through the 
same model using the same depth sampling and slowness interpolation. As the 
maximum error is less than 7 msec, the interpolation may be considered to be 
perfect in the context of teleseismic earthquake location where observations are 
usually made only to the nearest tenth of a second. Notice that  interpolation errors 
are similar to observational errors in being roughly independent of range. The error 
curves are apparently oscillatory because the T splines provide range estimates 
which are, on the average, correct. Also for some of the core branches, the curve 
looks like a square wave. The error is either zero or 0.12 msec corresponding, 
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FIG. 6. Interpolation error in milliseconds as a function of angular range for all (geometrical) arrivals 

shown in Figure 5. Details of the curves are somewhat obscured as travel time and so travel-time error 
are multi-valued functions of range. 
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probably, to a least significant bit error  in calculating some parameter  internal  to 
the error  est imation.  The  fact tha t  the errors are predominant ly  above or below 
zero for each branch segment is due to the s tat ionari ty in est imating travel time. 
Figure 6 implies tha t  the number  of ray parameter  samples might be reduced by 
factors of 2 to 5 before errors in T(X) became unacceptable.  However,  care must  
be taken tha t  depth is sampled sufficiently often tha t  the model interpolat ion is 
adequate. 

Figure 7 shows the compressional  wave travel- t ime diagram for a source depth of 
700 km. The  dashed lines correspond to surface reflected down-going rays (e.g., pP 
and pPKP). Travel- t ime errors for the 700-km source depth are shown in Figure 8. 
Curves for down-going (solid lines) and surface reflected down-going (dashed lines) 
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FIG. 7. Compressional wave travel time as a function of angular range from a 700-kin deep source to 
surface receivers. Solid lines show direct refracted or reflected arrivals, dashed lines show surface 
reflected arrivals, and dotted lines show diffracted arrivals. 

branches overlap. The  error  distr ibution for 700 km and surface focus source depths 
are qualitatively the same. Fur thermore ,  the surface reflected branches have error 
curves tha t  closely mirror  the error  curve for the analogous down-going branch,  but  
shifted in distance. T h a t  is, the error  characterist ics seem to depend only on ray 
parameter .  

Figures 9 and 10 show similar diagrams for surface focus shear waves. In 
generating ~hese diagrams, the P E M C  shear s t ructure was used in the crust and 
mantle,  but  the compressional s tructure was used throughout  the core. The  ray 
parameter  discretization was created under  the same conditions as for the compres- 
sional wave structure,  but  resulted in 319 samples. The  low velocity zone shadow is 
more pronounced  in shear t han  in compression. Further ,  a small caustic is faithfully 
reproduced in the branch which turns  below the low velocity zone, but  is not  visible 
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on this scale. Figure 10 shows that  maximum interpolation errors for S waves are 
of the same order as those for P waves, although the distribution is, of course, 
different. Note that there is no problem in principal in treating converted phases 
(e.g., SKS). As in any other ray-interface interaction, a P to S conversion (or vice 
versa) is treated by simply conserving ray parameter. For these examples, mantle 
compressional and shear travel times were generated from separate tables. If phases 
are desired for which both compressional and shear velocity structures in one depth 
range are required (e.g., sP or SKP), then it would be more convenient to merge 
the two tables in some manner. A minimum requirement is that the P-wave ray 
parameter samples be a subset of the S-wave ray parameter samples. While it 
appears that there is no difficulty in principle, such a scheme has yet to be tried. 
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FIG. 8. Interpolation error as a function of angular range for all (geometrical} arrivals shown in 

Figure 7. Solid lines correspond to direct and dashed lines to surface-reflected pha,~es. 

Figures 5 to 10 show quite clearly that even the modest table dimensions used 
are more than adequate for the teleseismic earthquake location problem. From our 
experiments, we estimate that  given suitable tuning this algorithm is fast enough 
for even high volume applications such as the generation of the National Earthquake 
Information Service's "Preliminary Determination of Epicenters." Furthermore, as 
tables can be generated quickly and easily for any model, there is no reason that 
this approach could not be used on a regional or even a local scale. In these cases, 
there is, of course, no need to include the Earth model below the bottoming point 
of the deepest rays of interest which will greatly decrease the size of the required 
tables. The tau table algorithm has a number of significant advantages over 
homogeneous, plane layer techniques currently in use including proper modeling of 
down-going rays, of later arriving phases, of low velocity zones, and of surface 
reflected phases. 
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LATERALLY VARYING MODELS 

The concepts of the tau and theta functions, and many of their properties can be 
extended to laterally inhomogeneous media. The problem of interpolating travel- 
time tables is more serious than in laterally homogeneous models as more types of 
travel-time curves and discontinuities are possible. Additionally, the ray integrals 
are more expensive to evaluate. We shall not discuss the solution of the ray equations 
here, but restrict ourselves to the use of tables evaluated by the ray-shooting 
method. For simplicity, initially, we will restrict our discussion to two-dimensional 
models in which the rays remain in a plane. 

As before, we can evaluate the range and travel-time for an initial ray direction. 
The ray parameter (horizontal slowness) is no longer conserved along the ray, but 

S - s u r f a c e  f o c u s  
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FIG. 9. Shear wave travel time as a function of angular range from a surface source to surface 
receivers. Compressional velocities were used in the core so all core phases are twice converted {e.g., 
SKS and SKIKS). Solid lines show direct refracted or reflected arrivals, and the dotted line shows 
diffraction along the core-mantle interface. 

we can still define the horizontal slowness at any point on the ray, 

sin i 
p - , (60) 

v 

where i is the (acute) angle the ray makes with the vertical at a point where the 
medium velocity is v. We may equally well regard the travel-time and range integrals 
as functions ofp  at the source, po, or at the receiver, Pr. A s  in laterally homogeneous 
models, the gradient of the travel-time curve gives the horizontal slowness at the 
receiver 

dT 
p r  = dX" (61) 
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This being the case, we will consider all relevant functions to be functions of pr in 
the following. As no other horizontal slowness need be considered we will drop the 
subscript and p will always mean Pr. Proceeding, we can also define the intercept 
or delay time 

T(p)  = T ( p )  - p X ( p )  (62) 

and the theta function 

O(p, x) = T(p) + px  (63) 

S - surface focus 
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FIG. 10. Interpolation error as a function of angular range for all (geometrical) arrivals shown in 
Figure 9. 

as before. Also 

d-r(p) _ d T ( p )  d X ( p )  X ( p ) .  (64) 
dp dp P dp 

Applying the chain rule to equation (61) and substituting into equation (64) yields 

d~'(p) -X(p) (65) 
dp 

as before. Hence, the basic property that T ( X )  and ~ (p) are related by the Legendre 
transformation is preserved and geometrical arrivals will correspond to extrema of 
the theta function in exactly the same ways as for homogeneous media. 

The added complication in laterally inhomogeneous media is that the tau function 
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need no longer be a single-valued function of p, although the various functions are 
necessarily single-valued functions of P0. In inhomogeneous media, the derivative 
Op/3po can change sign (it is, of course, unity in a laterally homogeneous model). 
Points at which 

@ 
- 0 (66) 

Opo 

correspond to reversals or "caustics" in r (p). Frazer and Phinney (1980) have called 
these telescopic points.  Regarding tau and theta as functions of the source horizontal 
slowness, Po, they are single-valued functions, but tau is no longer monotonically 
decreasing, and theta has stationary points when Op/Opo = 0 which do not correspond 
to geometrical arrivals as 

aT(po) 3/:) 
- X ( p o )  - -  (67) 

3t9o 319o 

and 

aO(po, x) Op 
- ( x  - X ( p o ) )  - -  ( 6 8 )  

Opo Opo" 

These points can be easily detected when locating geometrical arrivals. Maslov 
(1965, 1972) has developed the ideas behind transformations between the spatial 
and slowness domains in more generality. Kravtsov (1968) has provided a concise 
review of Maslov's asymptotic theory that  is available in English, and Chapman 
and Drummond (1982) have used this theory to extend WKBJ synthetic seismo- 
grams to laterally varying models. 

These ideas are easily extended to three-dimensional models. We consider Carte- 
sian coordinates where, for notational simplicity, we call the horizontal coordinates 
x = (xl, x2). We define a horizontal slowness vector p (pl, P2) which varies along 
the ray, and call the value at the source Po. The horizontal slowness vector is related 
to the travel time by 

p = VT(X) (69) 

where the gradient operator, VT, acts in the horizontal direction only. We define the 
tau function 

-r(p) = T ( p )  - p  • X ( p )  (70) 

which can be regarded as a function of the initial slowness, Po, or the receiver 
slowness, p .  T and X are the travel-time and range functions to a fixed, horizontal 
receiver surface (i.e., z = constant) and again can be regarded as functions of 
either p0 or p.  Letting the various functions be functions of p,  in analogy with 
equation (65) 

V ~ ( p )  = - X ( p ) .  (71) 
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Defining the theta function 

O ( p ,  x )  = r ( p )  + p • x = T ( p )  + p . ( x  - X,(p) ) .  (72) 

where x is the receiver position, we have 

VO(p, x)  = x - X , ( p )  (73) 

which again is zero for geometrical arrivals. As before when x = X, 0 = T. As for 
the two-dimensional case, T and 0 can be multi-valued when regarded as functions 
o fp .  Regarded as functions ofpo,  they are necessarily single-valued, but the theta 
function is stationary at telescopic points where the Jacobian is zero 

0 ( p l ,  P2) 

O(po~, Po2) 
- 0 ( 7 4 )  

which do not correspond to geometrical arrivals. 

DISCUSSION 

In this paper, we have presented a new method for computing the travel times of 
high-frequency body waves in spherically symmetric Earth models. We have first 
developed a complete theoretical framework. Second, we have restricted the class 
of phenomena of interest so as to simplify the algorithm and improve computational 
performance with no detriment for most purposes. Third, we have presented "cook 
book" procedures and formulas for discretizing model depth and wave ray parameter, 
evaluating ray integrals, interpolating T(p), locating extrema of O(p,  x),  and 
organizing the tau tables. Fourth, we have demonstrated the precision of the method 
and its ability to correctly represent complex geophysical phenomena including 
shadow zones, caustics, and "triplications" due to model discontinuities even at 
teleseismic distances. Finally, we have shown how this method may be extended to 
treat laterally inhomogeneous structures. We feel that this algorithm has many 
applications in seismology by virtue of its precision and computational efficiency, 
its flexibility in meeting specific computational requirements, its ability to be easily 
tailored to determine as many or as few secondary arrivals as desired, and its 
robustness in being able to treat a wide range of geophysically interesting Earth 
models. 

A side effect of this technique is the easy availability of estimates of T(p) and 
X ( p )  for all ray parameters, source depths, and branches of interest. Thus, the 
same tables and ~ spline interpolation can provide a basis for other types of 
calculation as well. One example has already been mentioned. Evaluating the theta 
function is a major portion of the computational labor required to construct WKBJ 
synthetic body-wave seismograms. For some purposes (e.g., phase identification), 
approximate body-wave amplitude is of more interest than the waveform itself. We 
suggest that such an amplitude might be derived from the WKBJ theory. Although 
such an estimate can be misleading in certain special cases, it will always be far 
more reliable than the infinite frequency estimate. Another possibility is to extract 
incremental range from the tables at each model depth for which tau information 
is saved. In this way, an approximation of the ray path geometry (or at least the 
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segment which is shallower than the deepest allowable source depth) can be 
constructed. Buland (1982) has suggested that integration of a velocity perturbation 
along such a ray path segment might be used to include the travel-time contribution 
of a three-dimensional structure in an otherwise one-dimensional model by means 
of first-order perturbation theory. As we have seen, three-dimensional structures 
can be treated directly. However, for certain purposes (most notably earthquake 
location), the computational speed of the perturbation approach is attractive. 
Further, elimination of infinite frequency shadows and multipathing can stabilize 
an earthquake location procedure with little or no loss of precision in the solution. 
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APPENDIX 

Consider one segment of a tau branch which is sampled at the N ray parameters 

Po < P l  < " " " < PN-1  = P e n d .  (A1) 

The segment is defined so that X ' ( p )  is singular only at Pn-~. As in equation (56), 
we define 4 ( N -  1) T spline coefficients such that 

~ ( p )  = ai + bi(p~nd - p )  + ci(p~nd - p )2  + d~(p.,~d - p)3/2; Pi <-- P <= P~+z. (A2) 

In defining these coefficients, we require that ~ (p) be fit exactly at each sample 
point which places two constraints per interval or 2(N - 1) constraints total. Also, 
we require that X ( p o )  and X(Pend) be fit exactly for two more constraints. The 
remaining 2(N - 2) constraints arise from requiring continuity in the first and 
second derivatives of ~ (p) at each internal sample point. 

We could simply determine all coefficients by solving the 4(N - 1) × 4(N - 1) 
system of equations. Even though the resulting matrix is banded, a more stable and 
compact algorithm can be designed by employing basis functions. Consider a basis 
function, ¢i(p), which is nonzero only on the interval (pi-.2, Pi+2) and is comprised 
of four (one per interval) piecewise taR splines. The 16 coefficients defining ¢i can  
be determined by constraining ¢i and its first and second derivatives to all be zero 
at p~-2 and P~+2 and to all be continuous at pi-1, pi and p~+l. As the final constraint, 
we normalize ¢~ (p~) to unity. Neglecting, for the moment, difficulties in constructing 
basis functions in the vicinity of p0 and Pend, we may rewrite equation (A2) as 

N 

T(p) = ~ ~i¢i(p). (A3) 
; - - _ 1  
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The N + 2 -y's are determined by fitting the N tau values and two ranges as before. 
Continuity conditions are automatically satisfied due to the definition of the basis 
functions. 

Because each ¢i(P) interacts only with its nearest neighbors, there are only N + 
2 basis functions which can contribute to the interval [Po, Penal]. For the same 
reason, the resulting (N + 2) × (N + 2) system of equations will be tridiagonal and 
thus trivial to solve. Finally, the 4(N - 1) coefficients required in equation (A2) 
could be determined as linear combinations of the 16(N + 2) coefficients defining 
the basis functions in equation (A3). An equivalent procedure which is more 
compact, is to use linear combinations of the basis functions to determine X(p) at 
the N - 2 internal samples. The T spline coefficients in equation (A3) may then be 
determined simply by fitting T(p) and X(p) at both ends of each interval, a purely 
local scheme which is identical to the construction of H splines. In effect, the basis 
functions are used to differentiate T (p). An advantage of this latter scheme is that  
it is not necessary to save the 16(N + 2) basis function coefficients. Rather, three 
basis function contributions to • (p) and three contributions to X(p) are needed at 
each sample for a total of 6N values. 

Determining ¢-1, ~o, and ~1 require defining ray parameter samples p-3 < P-2 < 
P-1 < p0. As the details are not critical, we have done so by requiring that p-2 - P-3 
= p-1 - P-2 = po - P-1 = Pl - po. The same trick cannot be used at pe~d. Because of 
the singularity in X'  (p) at Pe~d, special definitions are required for ~N-~, ¢N-2, #N-l, 
and CN- We have found it convenient to truncate #N-2, ¢N-1, and ¢N at P~nd. For 
#N-3, we have substituted the condition that  the first derivative at PN-3 be zero 
rather than the second derivative at p~nd be zero. For the truncated ¢N-2 there are 
12 coefficients and 10 usable constraints. The difference is made up by constraining 
CN-2(PN-1) to be i and forcing the first derivative to be zero atpN-2. For ¢N-1, there 
are 8 coefficients and 7 usable constraints. Again, we constrain the first derivative 
to be zero at PN-1. Finally, for #N, there are 4 coefficients and 3 usable constraints. 
In this case, we simply constrain ~N(PN-1) to be ~. 


